• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spectroscopic Characterization of Model Organic Pollutant Interactions with Mineral Oxide Surfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1799_sip1_m.pdf
    Size:
    3.381Mb
    Format:
    PDF
    Description:
    azu_etd_1799_sip1_m.pdf
    Download
    Author
    Ringwald, Steven
    Issue Date
    2006
    Keywords
    spectroscopic
    characterization
    oxide
    surfaces
    organic
    pollutant
    Advisor
    Pemberton, Jeanne E.
    Committee Chair
    Pemberton, Jeanne E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Vibrational spectroscopy is used to elucidate the adsorption mechanisms of model volatile organic pollutants with a variety of mineral oxides. Vapor phase adsorption processes are particularly important in the vadose zone of an aquifer, where void spaces are filled with air and vapor transport is significant. Gaining a better understanding of the interactions occurring at the oxide-air interface is critical in developing or improving remediation strategies. In this work, Raman and infrared spectroscopy are used to obtain molecularly specific information concerning model pollutant-oxide adsorption processes. The choices of pollutants are varied to include several classes of compounds. The interactions of azaarenes, aromatics, chlorinated aromatics, trichloroethylene, and tributyl phosphate are investigated with several mineral types. Pure mineral phases such as silica, alumina, hydrated iron oxide, and montmorillonite clay are used to provide a basis set of interactions, which can be extended to more complex systems in the future. Pollutantoxide interactions, including weak physisorption, hydrogen bonding, Bronsted acid-base, and Lewis acid-base, were identified in this work and varied depending on the specific pollutant-oxide system. This research provides surface adsorption information on environmentally relevant contaminants and the techniques may be utilized to verify the accuracy of pollutant fate and transport models and to improve remediation strategies for such pollutants.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.