• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE DEVELOPMENT OF INTRACELLULAR NANOSENSORS: ACID-DEGRADABLE POLYMERIZED PHOSPHOLIPID VESICLES AND FLUORESCENT LABELS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10868_sip1_m.pdf
    Size:
    17.09Mb
    Format:
    PDF
    Description:
    azu_etd_10868_sip1_m.pdf
    Download
    Author
    Roberts, David
    Issue Date
    2010
    Keywords
    acid-degradable cross-linker
    caged fluorescein
    nanosensor
    phospholipid vesicle
    rapid labeling
    Advisor
    Aspinwall, Craig A.
    Committee Chair
    Aspinwall, Craig A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Phospholipid vesicles are biocompatible, and have potential for intracellular applications, but minimal membrane integrity limits their use in membrane-rich environments. Stabilized membranes overcome this limitation while maintaining biocompatible surface structures. Additionally, the modularity of phospholipid bilayer makes them ideal components when designing biologically inspired sensors. Membrane composition can be tailored to specific applications, transmembrane proteins can provide added functionalities, and the isolated interior can prevent cytotoxic and interfering detection chemistries from altering the cellular environment. This work has focused on expanding the capabilities of stabilized phospholipid membranes, and determining which formulations hold promise in developing stabilized phospholipid vesicle nanosensors.Current membrane stabilization methods suffer from either incomplete stabilization, or irreversible stabilization limiting the applications of vesicle nanosensors. Therefore, a facile method to prepare robust phospholipid vesicles using commonly available phospholipids stabilized via the formation of an interpenetrating, acid-labile, cross-linked polymer network that imparts controlled polymer destabilization and subsequent vesicle degradation was developed. Upon exposure to acidic conditions, the highly cross-linked polymer network was converted to linear polymers, substantially reducing vesicle stability upon exposure to chemical and physical insults. The resultant transiently stabilized vesicles have potential for enhanced drug delivery and chemical sensing applications requiring minimal membrane defects, and allow for improved physiological clearance.Some vesicle nanosensor schemes may require the passive diffusion of low molecular weight species across the membrane in addition to controllable degradation. Therefore, the acid-degradable, polymer-stabilized, phospholipid vesicle production method was extended to bis-SorbPC membranes by simultaneously polymerizing the vesicle with an acetal-containing cross-linker. The vesicles display prolonged stability under physiological conditions, and significant additional stability compared to vesicles composed of naturally occurring phospholipids. The vesicles demonstrated potential utility for sensing and therapeutic applications.Phospholipid vesicles can also serve as labels to observe movement in macromolecular biological assemblies, but a dearth of caged fluorescent labels limits design and function. Therefore, the first caged fluorescent thiol was synthesized, shown to label amines rapidly, and demonstrated the required photolytic properties. The caged fluorescent thiol has potential as a label in observing the movement of macromolecular biological assemblies and as a fluorescent probe for observing endosomal trafficking and release.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.