• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mechanisms of Cardiovascular Development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10307_sip1_m.pdf
    Size:
    3.440Mb
    Format:
    PDF
    Description:
    azu_etd_10307_sip1_m.pdf
    Download
    Author
    Rodgers, Laurel Speilman
    Issue Date
    2009
    Keywords
    AV Valve
    Coronary Vessels
    Development
    Epicardium
    Proepicardium
    Wnt
    Advisor
    Camenisch, Todd D.
    Runyan, Ray B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Epithelial to mesenchymal transition (EMT) is an essential process during embryogenesis for the development of organ systems, including the heart and its vasculature. The development of both coronary vessels and heart valves depends on EMT. In this dissertation, we first present data demonstrating that increasedoligosaccharide hyaluronan (o-HA) levels after EMT induction within atrioventricular (AV) valves leads to a decrease in EMT due to the induction of VEGF expression. Regulated EMT inhibition prevents the formation of hyperplastic valves. Next, we show that the proepicardium, which provides the precursor cells required for epicardial and coronary vessel development, migrates to the developing heart via direct contact of multicellular proepicardial villi to the developing myocardium. This shifts the paradigm from a migration consisting of floating cysts to one of direct contact and differential adhesion forces to form the initial epicardium. A subset of epicardial cells undergoes EMT, migrates into the developing heart, and differentiates into cardiac fibroblast, vascular endothelial, and smooth muscle cells. In order to more effectively study epicardial EMT in vitro, we developed several new methods for the in vitro study of coronary vessel development. We developed an improved protocol for isolating embryonic myocyte cells, for use in co-cultures with epicardial cells. This co-culture system allows investigation into the effects of myocyte derived soluble factors uponepicardial EMT and mesenchymal cell differentiation. We also present a protocol for isolating epicardial clonal colonies from an epicardial cell line derived from the ImmortoMouse. These clones provided direct evidence that the epicardium is a heterogeneous population of cells. These unique clones allow for to study into specific epicardial cell lineages and phenotypes. Finally, we provide data defining the expression of Wnts within the developing heart and the role may play during epicardial EMT. We conclude that canonical Wnts are both necessary and sufficient to inhibit epicardial EMT. These results provide the first direct evidence for a role of Wnt proteins during coronary vessel development. Collectively our results provide significant advancements in our understanding of EMT regulation during cardiac development.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Cell Biology & Anatomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.