• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Identification of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2415_sip1_m.pdf
    Size:
    5.278Mb
    Format:
    PDF
    Description:
    azu_etd_2415_sip1_m.pdf
    Download
    Author
    Rohrbough, James Gary, Jr.
    Issue Date
    2007
    Keywords
    Biochemistry
    Advisor
    Wysocki, Vicki H.
    Committee Chair
    Wysocki, Vicki H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease caused by inhalation of a spore from the soil-dwelling pathogenic fungi Coccidioides posadasii and C. immitis. A method of tandem mass spectrometry data analysis using dual protein sequence search algorithms for increasing the total protein identifications from an analysis is described. This method was utilized in a comprehensive proteomic analysis of cell walls isolated from the dimorphic fungal pathogen C. posadasii. A strategy of tandem mass spectrometry-based protein identification coupled with bioinformatic sequence analysis was used to produce a list of protein vaccine candidates for further testing. A differential proteome analysis using stable isotope protein labeling was undertaken to identify vaccine candidate proteins that are more highly expressed in the spherule, or pathogenic phase, of C. posadasii. The results of these analyses are 9 previously undescribed protein vaccine candidates isolated from spherule cell walls that have sequence indications of extracellular association such as GPI anchors and N-terminal signal sequences and antigen potential based on homology to known antigenic or secreted proteins. An additional 14 proteins identified from spherule cell walls are potential vaccine candidates based on extracellular sequence predictions without any indications of antigenic potential. The stable isotope labeling study has identified 3 more proteins that are preferentially expressed in spherules and exhibit antigenic potential based on extracellular localization or homology to known antigenic proteins. Additionally, there were 5 unknown function proteins identified by stable isotope labeling that are more highly expressed in spherules that may be good vaccine candidates but cannot be identified or localized by sequence analysis.The dual algorithm protein identification method presented here is a new technique to address some common shortcomings associated with a proteomic analysis. The comprehensive proteomic analyses of Coccidioides posadasii presented here have provided new targets for Coccidioidomycosis vaccine development as well as insights into the proteome of this pathogen, such as the sequence comparison of C.posadasii proteins to human proteins, as well as a comprehensive analysis of predicted protein function in the Coccidioides proteome.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Biochemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.