• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MATCHED WAVEFORM DESIGN AND ADAPTIVE BEAMSTEERING IN COGNITIVE RADAR APPLICATIONS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11299_sip1_m.pdf
    Size:
    2.285Mb
    Format:
    PDF
    Description:
    azu_etd_11299_sip1_m.pdf
    Download
    Author
    Romero, Ric
    Issue Date
    2010
    Keywords
    Beamsteering
    Cognitive Radar
    Cognitive Radar Network
    Matched Illumination
    Target Recogniiton
    Track and Search
    Advisor
    Goodman, Nathan
    Committee Chair
    Goodman, Nathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cognitive Radar (CR) is a paradigm shift from a traditional radar system in that previous knowledge and current measurements obtained from the radar channel are used to form a probabilistic understanding of its environment. Moreover, CR incorporates this probabilistic knowledge into its task priorities to form illumination and probing strategies thereby rendering it a closed-loop system. Depending on the hardware's capabilities and limitations, there are various degrees of freedom that a CR may utilize. Here we will concentrate on two: temporal, where it is manifested in adaptive waveform design; and spatial, where adaptive beamsteering is used for search-and-track functions. This work is divided into three parts. First, comprehensive theory of SNR and mutual information (MI) matched waveform design in signal-dependent interference is presented. Second, these waveforms are used in a closed-loop radar platform performing target discrimination and target class identification, where the extended targets are either deterministic or stochastic. The CR's probabilistic understanding is updated via the Bayesian framework. Lastly, we propose a multiplatform CR network for integrated search-and-track application. The two radar platforms cooperate in developing a four-dimensional probabilistic understanding of the channel. The two radars also cooperate in forming dynamic spatial illumination strategy, where beamsteering is matched to the channel uncertainty to perform the search function. Once a target is detected and a track is initiated, track information is integrated into the beamsteering strategy as part of CR's task prioritization.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.