An Evaluation of a UAV Guidance System with Consumer Grade GPS Receivers
Name:
azu_etd_10401_sip1_m.pdf
Size:
4.549Mb
Format:
PDF
Description:
azu_etd_10401_sip1_m.pdf
Author
Rosenberg, Abigail StellaIssue Date
2009Keywords
aerial photographyfire mapping
GPS
remote sensing
remotely piloted vehicles
unmanned aerial vehicles
Advisor
Waller, Peter MCommittee Chair
Waller, Peter M
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies.Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data.Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes.Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Agricultural & Biosystems EngineeringGraduate College