• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On the Role of Linear Processes in the Development and Evolution of Filaments in Air

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2278_sip1_m.pdf
    Size:
    1.526Mb
    Format:
    PDF
    Description:
    azu_etd_2278_sip1_m.pdf
    Download
    Author
    Roskey, Daniel Eric
    Issue Date
    2007
    Keywords
    nonlinear optics
    filaments
    light strings
    filament control
    nonlinear schroedinger
    Advisor
    Wright, Ewan M
    Committee Chair
    Wright, Ewan M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    It is well known that ultrashort, high intensity pulses with peak powers exceedinga certain critical value (Pcr) undergo self-focusingleading to collapse and filamentation. During the initial stagesof propagation at low intensities the beamdynamics are dominated by diffraction and dispersion. During filamentation, self-focusing resulting from the nonlinear Kerr effect is balanced by higher order nonlinearities such as plasma induced defocusing and absorption.This work examines the role that linear processes combined with initial spatial and temporal conditioningplay in the generation and subsequent evolution of filaments within nonlinearbeams. It is demonstrated that, because of linear diffraction, initial spatial beam shaping can have a dramatic effect on the filament pattern, the number of filaments and the energy contained in each filament. These ideas are applicable to cases that arequite common, such as circularly apodized beams, and help to explain interestingbehavior observed in these types of beams. Finally, it is demonstrated thatwith appropriate preconditioning of multiple subcritical pulses, linear effects can be employed to accurately control when and where filamentation occurs during long distance propagation through conditional collapse of overlapping pulses.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.