We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.
Name:
azu_etd_2666_sip1_m.pdf
Size:
14.24Mb
Format:
PDF
Description:
azu_etd_2666_sip1_m.pdf
Author
Russo, AnnIssue Date
2008Advisor
Brusseau, Mark L.Committee Chair
Brusseau, Mark L.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Immiscible liquids, including chlorinated solvents, have proven to be a lasting source of subsurface contamination at many hazardous waste sites. Continued improvement of site characterization and determination of applicable remediation technologies can be achieved by further understanding of the transport and fate of these contaminants. The transport and fate of trichloroethene (TCE) was investigated through miscible displacement and dissolution experiments. Miscible displacement experiments were conducted using homogeneously packed columns with several porous media encompassing a range of particle size distributions. Immiscible liquid dissolution was investigated using homogeneously packed columns containing a residual saturation of trichloroethene. The same porous media were used for immiscible liquid dissolution experiments. Mathematical modeling of miscible displacement and dissolution experiments was conducted using a one-dimensional single region or multi-region model. Imaging of immiscible liquid dissolution was also conducted, using Synchrotron X-ray Microtomography imaging at Argonne National Laboratory, Argonne, IL. Dissolution experiments exhibited nonideal dissolution behavior that was apparent in observed effluent data and in collected imaging data. Nonideal behavior was manifested as secondary regions of relatively constant aqueous concentrations occurring for a number of pore volumes. This behavior was observed to increase in magnitude as particle size distribution of the porous media increased. During imaging, immiscible liquid blobs were observed to dissolve throughout the column during dissolution. This behavior is also indicative of nonideal dissolution, as it would be expected that dissolution would first occur for the blobs nearest the inlet and then proceed upward through the column as dissolution progressed. In many cases, a multi-region modeling approach was necessary to successfully represent the nonideal behavior observed. Comparisons were made between the natural porous media used for this research and a well-sorted sand. Nonideal dissolution was not observed in the well-sorted sand.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Soil, Water and Environmental ScienceGraduate College