Show simple item record

dc.contributor.authorSampurno, Yasa
dc.creatorSampurno, Yasaen_US
dc.date.accessioned2011-12-05T22:38:52Z
dc.date.available2011-12-05T22:38:52Z
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/10150/194544
dc.description.abstractThis dissertation presents a series of studies relating to kinetics and kinematics of inter-layer dielectric and metal chemical mechanical planarization processes. These are also evaluated with the purposes of minimizing environmental and cost of ownership impact.The first study is performed to obtain the real-time substrate temperature during the polishing process and is specifically intended to understand the temperature distribution across the polishing wafer during the chemical mechanical planarization process. Later, this technique is implemented to study the effect of slurry injection position for optimum slurry usage. It is known that the performance of chemical mechanical planarization depends significantly on the polishing pad and the kinematics involved in the process. Variations in pad material and pad grooving type as well as pressure and sliding velocity can affect polishing performance. One study in this dissertation investigates thermoset and thermoplastic pad materials with different grooving methods and patterns. The study is conducted on multiple pressure and sliding velocity variations to understand the characteristic of each pad. The analysis method elaborated in this study can be applied generically.A subsequent study focuses in a slurry characterization technique. Slurry, a critical component in chemical mechanical planarization, is typically a water-based dispersion of fine abrasive particles with various additives to control material removal rate and microscratches. Simultaneous turbidity and low angle light scattering methods under well-defined mixing conditions are shown to quantify the stability of abrasive particle from aggregations. Further contribution of this dissertation involves studies related to the spectral analysis of raw shear force and down force data obtained during chemical mechanical planarization. These studies implemented Fast Fourier Transforms to convert force data from time to frequency domain. A study is performed to detect the presence of larger, defect-causing particles during polishing. In a further application on diamond disc conditioning work is performed to achieve optimum break-in time and an optimum conditioning duty cycle. Studies on spectral analysis are also extended to planarization of shallow trench isolation pattern wafers to monitor the polishing progress in real-time.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectchemical mechanical planarizationen_US
dc.subjectCMPen_US
dc.subjecttribologyen_US
dc.subjectcharacterizationen_US
dc.subjectconsumablesen_US
dc.subjectpolishingen_US
dc.titleFundamental Consumables Characterization of Advanced Dielectric and Metal Chemical Mechanical Planarization Processesen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairPhilipossian, Araen_US
dc.identifier.oclc659749855en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberShadman, Farhangen_US
dc.contributor.committeememberBlowers, Paulen_US
dc.contributor.committeememberLynch, Daviden_US
dc.identifier.proquest2802en_US
thesis.degree.disciplineChemical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePhDen_US
refterms.dateFOA2018-06-04T15:42:25Z
html.description.abstractThis dissertation presents a series of studies relating to kinetics and kinematics of inter-layer dielectric and metal chemical mechanical planarization processes. These are also evaluated with the purposes of minimizing environmental and cost of ownership impact.The first study is performed to obtain the real-time substrate temperature during the polishing process and is specifically intended to understand the temperature distribution across the polishing wafer during the chemical mechanical planarization process. Later, this technique is implemented to study the effect of slurry injection position for optimum slurry usage. It is known that the performance of chemical mechanical planarization depends significantly on the polishing pad and the kinematics involved in the process. Variations in pad material and pad grooving type as well as pressure and sliding velocity can affect polishing performance. One study in this dissertation investigates thermoset and thermoplastic pad materials with different grooving methods and patterns. The study is conducted on multiple pressure and sliding velocity variations to understand the characteristic of each pad. The analysis method elaborated in this study can be applied generically.A subsequent study focuses in a slurry characterization technique. Slurry, a critical component in chemical mechanical planarization, is typically a water-based dispersion of fine abrasive particles with various additives to control material removal rate and microscratches. Simultaneous turbidity and low angle light scattering methods under well-defined mixing conditions are shown to quantify the stability of abrasive particle from aggregations. Further contribution of this dissertation involves studies related to the spectral analysis of raw shear force and down force data obtained during chemical mechanical planarization. These studies implemented Fast Fourier Transforms to convert force data from time to frequency domain. A study is performed to detect the presence of larger, defect-causing particles during polishing. In a further application on diamond disc conditioning work is performed to achieve optimum break-in time and an optimum conditioning duty cycle. Studies on spectral analysis are also extended to planarization of shallow trench isolation pattern wafers to monitor the polishing progress in real-time.


Files in this item

Thumbnail
Name:
azu_etd_2802_sip1_m.pdf
Size:
52.11Mb
Format:
PDF
Description:
azu_etd_2802_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record