• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Iterative Decoding of Codes on Graphs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1810_sip1_m.pdf
    Size:
    948.4Kb
    Format:
    PDF
    Description:
    azu_etd_1810_sip1_m.pdf
    Download
    Author
    Sankaranarayanan, Sundararajan
    Issue Date
    2006
    Keywords
    iterative decoder
    product codes
    LDPC codes
    error performance
    stopping sets
    trapping sets
    Advisor
    Vasic, Bane
    Committee Chair
    Vasic, Bane
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The growing popularity of a class of linear block codes called the low-density parity-check (LDPC) codes can be attributed to the low complexity of the iterative decoders, and their potential to achieve performance very close to the Shannon capacity. This makes them an attractive candidate for ECC applications in communication systems. This report proposes methods to systematically construct regular and irregular LDPC codes.A class of regular LDPC codes are constructed from incidence structures in finite geometries like projective geometry and affine geometry. A class of irregular LDPC codes are constructed by systematically splitting blocks of balanced incomplete block designs to achieve desired weight distributions. These codes are decoded iteratively using message-passing algorithms, and the performance of these codes for various channels are presented in this report.The application of iterative decoders is generally limited to a class of codes whose graph representations are free of small cycles. Unfortunately, the large class of conventional algebraic codes, like RS codes, has several four cycles in their graph representations. This report proposes an algorithm that aims to alleviate this drawback by constructing an equivalent graph representation that is free of four cycles. It is theoretically shown that the four-cycle free representation is better suited to iterative erasure decoding than the conventional representation. Also, the new representation is exploited to realize, with limited success, iterative decoding of Reed-Solomon codes over the additive white Gaussian noise channel.Wiberg, Forney, Richardson, Koetter, and Vontobel have made significant contributions in developing theoretical frameworks that facilitate finite length analysis of codes. With an exception of Richardson's, most of the other frameworks are much suited for the analysis of short codes. In this report, we further the understanding of the failures in iterative decoders for the binary symmetric channel. The failures of the decoder are classified into two categories by defining trapping sets and propagating sets. Such a classification leads to a successful estimation of the performance of codes under the Gallager B decoder. Especially, the estimation techniques show great promise in the high signal-to-noise ratio regime where the simulation techniques are less feasible.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.