• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    LATE QUATERNARY GLACIATION AND PALEOCLIMATE OF TURKEY INFERRED FROM COSMOGENIC 36Cl DATING OF MORAINES AND GLACIER MODELING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10327_sip1_m.pdf
    Size:
    14.80Mb
    Format:
    PDF
    Description:
    azu_etd_10327_sip1_m.pdf
    Download
    Author
    Sarikaya, Mehmet Akif
    Issue Date
    2009
    Keywords
    Cosmogenic isotopes
    Glacier
    Late Quaternary
    Moraine
    Paleoclimate
    Turkey
    Advisor
    Zreda, Marek G.
    Committee Chair
    Zreda, Marek G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The main objective of this dissertation is to improve the knowledge of glacial chronology and paleoclimate of Turkey during the Late Quaternary. The 36Cl cosmogenic exposure ages of moraines show that Last Glacial Maximum (LGM) glaciers were the most extensive ones in Turkey in the last 22 ka (ka=thousands years), and they were closely correlated with the global LGM chron (between 19±23 ka). LGM glaciers started retreating 21.3±0.9 ka (1σ) ago on Mount Erciyes, central Turkey, and 20.4±1.3 ka ago on Mount Sandiras, southwest Turkey. Glaciers readvanced and retreated by 14.6±1.2 ka ago (Late Glacial) on Mount Erciyes and 16.2±0.5 ka ago on Mount Sandiras. Large Early Holocene glaciers were active in Aladaglar, south-central Turkey, where they culminated at 10.2±0.2 ka and retreated by 8.6±0.3 ka, and on Mount Erciyes, where they retreated by 9.3±0.5 ka. The latest glacial advance took place 3.8±0.4 ka ago on Mount Erciyes. Using glacier modeling together with paleoclimate proxy data from the region, I reconstructed the paleoclimate at these four discrete times. The results show that LGM climate was 8-11oC colder than today (obtained from paleotemperature proxies) and wetter (up to 2 times) on the southwestern mountains, drier (by ~60%) on the northeastern ones and approximately the same as today in the interior regions. The intense LGM precipitation over the mountains along the northern Mediterranean coast was produced by unstable atmospheric conditions due to the anomalously steep vertical temperature gradients on the Eastern Mediterranean Sea. In contrast, drier conditions along the southern Black Sea coast were produced by the partially ceased moisture take-up from the cold or frozen Black Sea and prevailing periglacial conditions due to the cold air carried from northern hemisphere's ice sheets. Relatively warmer and moister air from the south and overlying cold and dry air pooled over the northern and interior uplands created a boundary between the wet and dry LGM climates somewhere on the Anatolian Plateau. The analysis of Late Glacial advances suggests that the climate was colder by 4.5-6.4oC based on up to 1.5 times wetter conditions. The Early Holocene was 2.1oC to 4.9oC colder on Mount Erciyes and up to 9oC colder on Aladaglar, based on twice as wet as today's conditions. The Late Holocene was 2.4-3oC colder than today and the precipitation amounts approached the modern levels. Glaciers present on Turkish mountains today are retreating at accelerating rates and historical observations of the retreat are consistent with the behavior of other glaciers around the world.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Hydrology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.