• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-resolution Diffusion-weighted Magnetic Resonance Imaging: Development and Application of Novel Radial Fast Spin-echo Acquisitions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1704_sip1_m.pdf
    Size:
    7.779Mb
    Format:
    PDF
    Description:
    azu_etd_1704_sip1_m.pdf
    Download
    Author
    Sarlls, Joelle Elita
    Issue Date
    2006
    Keywords
    Biomedical Engineering
    Committee Chair
    Trouard, Theodore P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Diffusion-weighted Magnetic Resonance Imaging (DWI) has become a useful tool in medicine for the purpose of diagnosis, tracking disease progression, and monitoring response to therapy. The current techniques used for DWI suffer from artifacts due to magnetic field inhomogeneities, image distortion, and low spatial resolution. The aim of the presented work is to advance DWI by improving upon and developing novel high-resolution acquisition techniques. The approach taken for this purpose was to utilize radial fast spin-echo data acquisitions, which have been shown to produce high-resolution DWI without artifacts due to magnetic field inhomogeneities. In addition, there is little image distortion in radial fast spin-echo DWI, which allows for direct overlay onto anatomical MRI. However, a draw back is that radial methods require longer scan times. By increasing the imaging speed of existing radial fast spin-echo acquisitions, it may become a more practical clinical tool. In addition, novel acquisition techniques are developed that push high-resolution to all three dimensions. By employing a three-dimensional radial fast spin-echo acquisition, voxels in an image have equal size in each dimension and can be on the order of 1mm3. By decreasing the voxel size, the tissue contained within a voxel is more homogeneous. This is important for DWI applications that aim to measure the microscopic integrity of the tissue. The development and analysis of the novel radial fast spin-echo techniques are presented in this work along with several clinical applications. The remaining issues to be addressed for application to quantitative DWI measures are also presented, along with possible solutions.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Biomedical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.