• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spectroscopic Srudies of Model Organic Photovoltaic and Organic Light Emitting Diode Organic-Organic' and Metal-Organic Heterojunctions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10721_sip1_m.pdf
    Size:
    9.112Mb
    Format:
    PDF
    Description:
    azu_etd_10721_sip1_m.pdf
    Download
    Author
    Schalnat, Matthew Craig
    Issue Date
    2009
    Advisor
    Pemberton, Jeanne E.
    Committee Chair
    Pemberton, Jeanne E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The purpose of this Dissertation was to present fundamental approaches to expand the general knowledge of the chemistry that occurs at both the organic-organic' (O-O') and the metal-organic (M-O) interfaces in organic optoelectronic devices. In order to simplify the interactions in the initial studies presented herein, simple model molecules that represent the larger, highly conjugated molecules used in device construction were considered.UPS, reductive-desorption electrochemistry, and Raman surface spectroscopy were used to determine monolayer characteristics of thiophenol and pentafluorothiophenol on Ag. Proposed interfacial orientations and molecular spacing of the TP and F5TP were proposed. Benzene and hexafluorobenzene (F6-benzene) were then condensed and forcibly dewet onto the monolayers in an effort to understand the solid-liquid interfacial interactions. Benzene films on alkanethiol (UDT) and perfluorinated thiophenol (F5TP) were prone to rupturing, and spectroscopically appeared to be liquid-like in character, while molecular spacing of TP and adsorbed benzene on unmodified Ag template ordered benzene films. Polycrystalline films of F6-benzene forms at the interfaces of TP and unmodified substrates. F6-benzene induces a reorientation of F5TP molecules, but is subsequently unable to induce long range order. F6-benzene on UDT appears liquid-like. These studies show that fixed molecules can stimulate order or disorder at a molecular heterojunction, which may have profound effects in device efficiency.In an effort to begin to understand the complicated reaction chemistry that occurs at the organic-metal interfaces in optoelectronic devices, thin benzene films were reacted with typical device cathode metals, Ag, Mg, Al, and Ca, and studied using Raman vibrational spectroscopy. Ag and Mg form metal clusters and some adduct formation. Al undergoes an insertion reaction, forming a substituted benzene ring. Ca reacts with benzene to form a phenyl radical, which then decomposes the film into regions of ordered graphitic carbon. The results of these studies are attributed to atomic properties of the metal atoms.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.