• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analytical Applications Of Supramolecular Materials In Chemical And Biological Sensors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2945_sip1_m.pdf
    Size:
    4.986Mb
    Format:
    PDF
    Description:
    azu_etd_2945_sip1_m.pdf
    Download
    Author
    Senarath-Yapa, Muditha Dharshana
    Issue Date
    2008
    Keywords
    Chemistry
    Committee Chair
    Saavedra, Stephen Scott
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Supramolecular materials are complex chemical structures held together by noncovalent interactions such as electrostatic, hydrogen bonding, van der Waals, and donor-acceptor type interactions. Both individual molecules such as dendrimers and molecular assemblies such as lipid bilayers are categorized under supramolecular materials. Analytical applications of supramolecular materials are increasing and being explored due to their fascinating characteristics. In the work reported in this dissertation, use of supramolecular materials to eliminate/minimize some shortcomings in sol-gel based optical chemical sensor materials (dye leaching, low sensitivity) and in fluor doped silica nanoparticle based biolabels (nonspecific adsorption of/to proteins) were explored. In part one, the ability of PAMAM dendrimers to act as anchors for dye molecules was investigated. Binding the dye molecules to PAMAM quantitatively eliminated the leaching of the dye from sol-gel matrices in aqueous solutions. It was shown that this retention of dye is due to the physical entrapment of the PAMAM bound dye molecules. Taking advantage of the available primary amine groups, dye (Nile red) modified PAMAM molecules were further modified with alkyl chains. The alkylated, Nile red modified PAMAM was used with 2,4-dinitrotoluene (analyte) in aqueous media to show that alkyl chains can preconcentrate the analyte in the vicinity of the dye molecules. It was shown that C8 chains provided the better preconcentration out of the three chain lengths (C4, C8, and C18) tested. The fluorescence signal of the C8 modified PAMAM-Nile red was quenched with the addition of 2,4-dinitrotoluene. The non-alkylated version showed no quenching of signal.In part two of this dissertation, a poly(lipid) coated fluor doped silica particles were used as labels for cellular receptors. Using a model system consisting of streptavidin attached to HeLa cell surfaces, it was shown that poly(lipid) layers on silica particles can carry biotinylated lipids and can bind to streptavidin on HeLa cell surfaces. Most importantly the ploy(lipid) coated particles showed about 70% reduction in the nonspecific adsorption of the protein bovine serum albumin compared to bare particles. It was also shown that polymerized lipid layers could withstand much harsher conditions.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.