• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-Precision Large-Scale Structure: The Baryon Acoustic Oscillations and Passive Flow

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2290_sip1_m.pdf
    Size:
    2.061Mb
    Format:
    PDF
    Description:
    azu_etd_2290_sip1_m.pdf
    Download
    Author
    Seo, Hee-Jong
    Issue Date
    2007
    Keywords
    Cosmological distance scale
    baryon acoustic oscillations
    galaxy clustering
    N-body simulations
    passive flow
    Advisor
    Eisenstein, Daniel J
    Committee Chair
    Eisenstein, Daniel J
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We present a precision study of large-scale structure from large galaxy redshift surveys. We focus on two main subjects of large-scale structure: precisioncosmology with baryon acoustic oscillations from large galaxy surveys and the evolution of galaxy clustering for passively flowing galaxies.The baryon acoustic oscillations in galaxy redshift surveys can serve as an efficient standard ruler to measure the cosmological distance scale, i.e., theangular diameter distances and Hubble parameters, as a function of redshift, and therefore dark energy parameters. We use a Fisher matrix formalism to show that such a standard ruler tests can constrain the angular diameter distances and Hubble parameters to a precision of a few percent, thereby providing robust measurements of present-day dark energy density and its time-dependence.We use N-body simulations to investigate possible systematic errors in the recovery of the cosmological distance scale from galaxy redshift surveys. We show that the baryon signature on linear and quasi-linear scales is robust against nonlinear growth, redshift distortions, and halo (or galaxy) bias, albeit partial obscuration of the signature occurs due to nonlinear growth and redshift distortions.We present the improved Fisher matrix formalism which incorporates the Lagrangian displacement field to describe the nonlinear effects on baryon signature as a function of time and scale. We present a physically motivated, reduced 2-dimensional fitting formula for the full Fisher matrix formalism. We show that distance precision from the revised formalism is in excellent agreement with distance precision from N-body simulations.Finally, we present a numerical study of the evolution of galaxy clustering when galaxies flow passively from high redshift to low redshift, that is, without merging or new formations. We show that passive flow evolution induces interesting characteristics in the galaxy distribution at low redshift: we find an asymptotic convergence in galaxy clustering and halo occupation distribution regardless of the initial distribution of galaxies.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.