• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fluids, Form, and Function: The Role of Fluid Dynamics in the Evolution of Stalactites, Icicles, and Aquatic Microorganisms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1824_sip1_m.pdf
    Size:
    4.764Mb
    Format:
    PDF
    Description:
    azu_etd_1824_sip1_m.pdf
    Download
    Author
    Short, Martin Bowen
    Issue Date
    2006
    Keywords
    fluid mechanics
    pattern formation
    volvox
    nonlinear
    Committee Chair
    Goldstein, Raymond E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation is devoted to better understanding the role that fluids play in the selection of the shapes and functions of objects and creatures in nature. Toward that end, three specific examples are considered: stalactites, icicles, and species of colonial green algae known as Volvox. In the cases of stalactites and icicles, the object's growth is considered as a free-boundary problem. For stalactites, the coupling of thin-film fluid dynamics with calcium carbonate chemistry leads to a local, geometric growth law that is proportional to the thickness of the water layer covering the surface at any point. Application of this law to a uniformly translating shape allows a universal stalactite form to be derived; the comparison of this shape to images of actual stalactites supports the theory. In the case of icicles, the transport of the latent heat of fusion is coupled with the dynamics of both the thin-film of water encompassing the icicle and a thermally buoyant boundary layer in the immediately surrounding air. The uniformly translating shape solution is found to be parameter-free, and is, in fact, the same shape exhibited by stalactites. A comparison between this shape and icicle images validates the theory. The final example considers how advection of nutrients due to the stirring of water by the flagella of a Volvox colony leads to a metabolite uptake rate that is much greater than would occur by diffusion alone. Moreover, nutrient acquisition by pure diffusion would limit the size of Volvox species to a certain bottleneck radius at the point where diffusional uptake just meets metabolic demands, whereas advection increases the uptake in such a way as to avoid this problem entirely, thus enabling the evolution of the larger Volvox species.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.