• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Discovery of Very-Low-Mass Binary Stars and Circumstellar Disks in the Infrared

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2229_sip1_m.pdf
    Size:
    3.698Mb
    Format:
    PDF
    Description:
    azu_etd_2229_sip1_m.pdf
    Download
    Author
    Siegler, Nick
    Issue Date
    2007
    Advisor
    Young, Erick T.
    Close, Laird M.
    Committee Chair
    Young, Erick T.
    Close, Laird M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We present results from three infrared observational studies investigating different aspects of stellar evolution. The first survey, conducted in the near-infrared with adaptive optics, measures for the first time the stellar multiplicity properties of field M6-M7.5 dwarf stars. We report that their binary fraction, separation distribution, and mass ratio distribution are very similar to those of later spectral type stars and brown dwarfs while distinct from more massive stellar binaries. These differences, when coupled with age, shed light on possibly different formation mechanisms and kinematic evolution between binary systems of different primary masses. I incorporate these results with those from all known very-lowmass binary systems (M(tot) ≤ 0.2 M⊙) and present their statistical properties. We also present the discovery of a very tight (66 mas) brown dwarf companion to a mid-L dwarf demonstrating the capabilities of laser guide star adaptive optics. In the second study we present mid-infrared Spitzer observations of members of the ∼ 50 Myr open stellar cluster IC 2391 where, using photometric techniques, we report that about a third of the solar-like stars (spectral types FGK) likely possess debris disks. With respect to several other stellar groups of known age, we show for the first time the evolution of the debris disk fraction of solar-like stars. We conclude that, along with more massive late-B and A stars, the formation of planetesimals around solar-like stars appears to be a universal process of star formation. Lastly, we present preliminary near- and mid-infrared Spitzer observations of stars in the direction of the ∼ 6 Myr open cluster IC 2395. Using photometric techniques, we identify upper main sequence cluster members and lower-mass candidate members with evidence of circumstellar disks at different stages of disk evolution - primordial, transition, and debris. We present for the first time the evolution of the median IRAC flux ratios emitted from the inner ∼ 0.2 AU regions of classic T Tauri stars. These results are possibly consistent with the processes of grain growth and dust settling as a mechanism for planetesimal formation.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.