Methods for the Detection of Protein-Nucleic Acid and Protein-Protein Interactions
Name:
azu_etd_2817_sip1_m.pdf
Size:
16.77Mb
Format:
PDF
Description:
azu_etd_2817_sip1_m.pdf
Author
Stains, CliffIssue Date
2008Advisor
Ghosh, IndraneelCommittee Chair
Ghosh, Indraneel
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
We describe the first general approach for the DNA templated reassembly of proteins, which we term SEquence-Enabled Reassembly or SEER. SEER makes use of dissected signaling domains which are each attached to separate, sequence specific DNA-binding proteins. Described herein is an embodiment of SEER in which DNA catalyzes the reassembly of the green fluorescent protein which leads to a direct fluorescence readout of the corresponding DNA sequence. This strategy has also been extended to the first direct method for the site specific detection of DNA methylation. This mCpG-SEER system is capable of discriminating between methylated versus nonmethylated DNA with a 40-fold increase in fluorescence signal.In a separate undertaking we tested the efficiency of disulfide bond formation within the context of the ribosome display in vitro selection methodology. We established conditions for the enrichment of a cyclic peptide, which is specific for Neutravidin, by 2 x 10^6-fold. Using the knowledge gained from the above experiments, we combined the rapid protein expression and folding benefits of cell-free translation systems with a sensitive split-luciferase reassembly assay to yield the most rapid method to date for the detection of protein-nucleic acid and protein-protein interactions. Furthermore, we have shown that these split-luciferase cell-free reassembly systems can be compartmentalized, allowing for future molecular evolution studies.Lastly, we have applied this rapid cell-free split-luciferase assay system to the direct detection of clinically relevant proteins. We have engineered a system for the rapid characterization of HIV-1 clades utilizing single-chain antibody specificities. We also demonstrate that this platform can be used to determine the relative amounts of HER2 expression in human breast cancer cells, using a homogeneous assay format in which cells and reagents are mixed and luminescence is monitored directly.We envision that the assay platforms described herein will find applications in the rapid detection of nucleic acid sequences, protein identities, and relative protein abundances in the laboratory and clinic.Type
textElectronic Dissertation
Degree Name
PhDDegree Level
doctoralDegree Program
ChemistryGraduate College