Show simple item record

dc.contributor.advisorGhosh, Indraneelen_US
dc.contributor.authorStains, Cliff
dc.creatorStains, Cliffen_US
dc.date.accessioned2011-12-06T13:26:55Z
dc.date.available2011-12-06T13:26:55Z
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/10150/194834
dc.description.abstractWe describe the first general approach for the DNA templated reassembly of proteins, which we term SEquence-Enabled Reassembly or SEER. SEER makes use of dissected signaling domains which are each attached to separate, sequence specific DNA-binding proteins. Described herein is an embodiment of SEER in which DNA catalyzes the reassembly of the green fluorescent protein which leads to a direct fluorescence readout of the corresponding DNA sequence. This strategy has also been extended to the first direct method for the site specific detection of DNA methylation. This mCpG-SEER system is capable of discriminating between methylated versus nonmethylated DNA with a 40-fold increase in fluorescence signal.In a separate undertaking we tested the efficiency of disulfide bond formation within the context of the ribosome display in vitro selection methodology. We established conditions for the enrichment of a cyclic peptide, which is specific for Neutravidin, by 2 x 10^6-fold. Using the knowledge gained from the above experiments, we combined the rapid protein expression and folding benefits of cell-free translation systems with a sensitive split-luciferase reassembly assay to yield the most rapid method to date for the detection of protein-nucleic acid and protein-protein interactions. Furthermore, we have shown that these split-luciferase cell-free reassembly systems can be compartmentalized, allowing for future molecular evolution studies.Lastly, we have applied this rapid cell-free split-luciferase assay system to the direct detection of clinically relevant proteins. We have engineered a system for the rapid characterization of HIV-1 clades utilizing single-chain antibody specificities. We also demonstrate that this platform can be used to determine the relative amounts of HER2 expression in human breast cancer cells, using a homogeneous assay format in which cells and reagents are mixed and luminescence is monitored directly.We envision that the assay platforms described herein will find applications in the rapid detection of nucleic acid sequences, protein identities, and relative protein abundances in the laboratory and clinic.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.titleMethods for the Detection of Protein-Nucleic Acid and Protein-Protein Interactionsen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairGhosh, Indraneelen_US
dc.identifier.oclc659749877en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberHruby, Victor J.en_US
dc.contributor.committeememberMcGrath, Dominic V.en_US
dc.contributor.committeememberMontfort, William R.en_US
dc.identifier.proquest2817en_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePhDen_US
refterms.dateFOA2018-07-13T11:43:18Z
html.description.abstractWe describe the first general approach for the DNA templated reassembly of proteins, which we term SEquence-Enabled Reassembly or SEER. SEER makes use of dissected signaling domains which are each attached to separate, sequence specific DNA-binding proteins. Described herein is an embodiment of SEER in which DNA catalyzes the reassembly of the green fluorescent protein which leads to a direct fluorescence readout of the corresponding DNA sequence. This strategy has also been extended to the first direct method for the site specific detection of DNA methylation. This mCpG-SEER system is capable of discriminating between methylated versus nonmethylated DNA with a 40-fold increase in fluorescence signal.In a separate undertaking we tested the efficiency of disulfide bond formation within the context of the ribosome display in vitro selection methodology. We established conditions for the enrichment of a cyclic peptide, which is specific for Neutravidin, by 2 x 10^6-fold. Using the knowledge gained from the above experiments, we combined the rapid protein expression and folding benefits of cell-free translation systems with a sensitive split-luciferase reassembly assay to yield the most rapid method to date for the detection of protein-nucleic acid and protein-protein interactions. Furthermore, we have shown that these split-luciferase cell-free reassembly systems can be compartmentalized, allowing for future molecular evolution studies.Lastly, we have applied this rapid cell-free split-luciferase assay system to the direct detection of clinically relevant proteins. We have engineered a system for the rapid characterization of HIV-1 clades utilizing single-chain antibody specificities. We also demonstrate that this platform can be used to determine the relative amounts of HER2 expression in human breast cancer cells, using a homogeneous assay format in which cells and reagents are mixed and luminescence is monitored directly.We envision that the assay platforms described herein will find applications in the rapid detection of nucleic acid sequences, protein identities, and relative protein abundances in the laboratory and clinic.


Files in this item

Thumbnail
Name:
azu_etd_2817_sip1_m.pdf
Size:
16.77Mb
Format:
PDF
Description:
azu_etd_2817_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record