• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GENOMIC REGULATION OF BOVINE MAMMARY EPITHELIAL CELL GROWTH AND DIFFERENTIATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1252_sip1_m.pdf
    Size:
    5.076Mb
    Format:
    PDF
    Description:
    azu_etd_1252_sip1_m.pdf
    Download
    Author
    Stiening, Chad Michael
    Issue Date
    2005
    Keywords
    functional genomics
    mammary epithelial
    lactogenesis
    heat stress
    serotonin
    bovine microarray
    Committee Chair
    Collier, Robert J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this dissertation was to evaluate genomic regulation during bovine mammary epithelial cell (BMEC) growth and differentiation. To accomplish this goal, a collagen gel cell culture system was developed that was capable of mimicking the prepartum stages of epithelial development and differentiation. In addition, a 4,600-cDNA bovine microarray was developed in order to profile gene expression. Analysis of BMEC in collagen cultures using various lactogenic conditions highlighted the critical importance of both hormonal and structural signals. The objective of the first study utilizing the microarray was to evaluate the contribution of the two prominent lactogenic factors in vitro, 1) prolactin and 2) gel release. Collectively, lactogenic stimulation appears to turn off genes associated with structural progression and morphogenesis, and turn on genes involved in alveolar MEC differentiation such as cell polarization, milk protein synthesis and ER/Golgi transport. The objective of the second study utilizing these resources was to evaluate the direct effects of thermal stress on BMEC growth and development. The structural response to thermal stress was characterized by morphogenic inhibition and dramatic regression of the ductal branches. Microarray analysis revealed an overall up-regulation of genes associated with stress response, DNA repair, protein degradation and cell death. In contrast, genes associated with cellular and MEC-specific biosynthesis, metabolism, and morphogenesis, were generally down-regulated. Subsequent to the analysis of BMEC differentiation was a targeted effort focusing on two small molecules hypothesized to be involved in regulating the BMEC secretory response: serotonin and prostaglandin E2. A pilot study suggested that serotonin is produced by bovine MEC and a model was proposed that describes serotonin's role as a feedback inhibitor during milk synthesis and secretion. A second pilot study demonstrated that PGE2 had a consistently positive influence on lumen diameter of alveolar structures in vitro. Overall, this dissertation provides new resources for studying bovine functional genomics, particularly within the mammary gland, and it provides a strong foundation for understanding genomic regulation of mammary epithelial structure and function. Furthermore, it establishes potential roles for local regulation of milk production by serotonin and PGE2.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Animal Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.