• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Games of Decentralized Inventory Management

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11282_sip1_m.pdf
    Size:
    2.080Mb
    Format:
    PDF
    Description:
    azu_etd_11282_sip1_m.pdf
    Download
    Author
    Summerfield, Nichalin Suakkaphong
    Issue Date
    2010
    Keywords
    biform games
    cooperative games
    inventory management
    noncooperative games
    stochastic programming
    Advisor
    Dror, Moshe
    Committee Chair
    Dror, Moshe
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Any decentralized retail or wholesale system of competing entities requires a benefit sharing arrangement when competing entities collaborate after their demands are realized. For instance, consider a distribution system similar to the observed behavior of independent car dealerships. If a dealership does not have in stock the car requested by a customer, it might consider acquiring it from a competing dealer. Such behavior raises questions about competitive procurement strategies that achieve system optimal outcomes. This dissertation consists of three main bodies of work contained respectively in chapters 2, 3, and 4. In the first work -- chapter 2, we examine a decentralized system that adopts an ex-post agreed transfer payment approach proposed by Anupindi et al. (Manuf. Serv. Oper.Manag. 4(3):349-368, 2001). In particular, we state a set of conditions on cost parameters and distributions that guarantee uniqueness of pure strategy Nash equilibrium. In the second work -- chapter 3, we introduce a multilevel graph framework that links decentralized inventory distribution models as a network of stochastic programming with recourse problems. This framework depicts independent retailers who maximize their individual expected profits, with each retailer independently procuring inventory in the ex-ante stage in response to forecasted demand and anticipated cooperative recourse action of all retailers in the system. The graph framework clarifies the modeling connection between problems in a taxonomy of decentralized inventory distribution models. This unifying perspective links the past work and shades light on future research directions. In the last work -- chapter 4, we examine and recast the biform games modeling framework as two-stage stochastic programming with recourse. Biform games modeling framework addresses two-stage games with competitive first stage and cooperative second stage without ex-ante agreement on profit sharing scheme. The two-stage stochastic programming view of biform games is demonstrated on examples from all the known examples regarding operational decision problems of competing firms from the literature. It allows an “old” mathematical methodology to showcase its versatility in modeling combined competitive and cooperative game options. In short, this dissertation provides important insights, clarifications, and strategic limitations regarding collaborations in decentralized distribution system.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Management Information Systems
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.