• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Compression and Classification of Imagery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1769_sip1_m.pdf
    Size:
    436.8Kb
    Format:
    PDF
    Description:
    azu_etd_1769_sip1_m.pdf
    Download
    Author
    Tabesh, Ali
    Issue Date
    2006
    Keywords
    JPEG2000
    compressed-domain statistical inference
    joint compression and classification
    Advisor
    Marcellin, Michael W.
    Committee Chair
    Marcellin, Michael W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Problems at the intersection of compression and statistical inference recur frequently due to the concurrent use of signal and image compression and classification algorithms in many applications. This dissertation addresses two such problems: statistical inference on compressed data, and rate-allocation for joint compression and classification.Features of the JPEG2000 standard make possible the development of computationally efficient algorithms to achieve such a goal for imagery compressed using this standard. We propose the use of the information content (IC) of wavelet subbands, defined as the number of bytes that the JPEG2000 encoder spends to compress the subbands, for content analysis. Applying statistical learning frameworks for detection and classification, we present experimental results for compressed-domain texture image classification and cut detection in video. Our results indicate that reasonable performance can be achieved, while saving computational and bandwidth resources. IC features can also be used for preliminary analysis in the compressed domain to identify candidates for further analysis in the decompressed domain.In many applications of image compression, the compressed image is to be presented to human observers and statistical decision-making systems. In such applications, the fidelity criterion with respect to which the image is compressed must be selected to strike an appropriate compromise between the (possibly conflicting) image quality criteria for the human and machine observers. We present tractable distortion measures based on the Bhattacharyya distance (BD) and a new upper bound on the quantized probability of error that make possible closed form expressions for rate allocation to image subbands and show their efficacy in maintaining the aforementioned balance between compression and classification. The new bound offers two advantages over the BD in that it yields closed-form solutions for rate-allocation in problems involving correlated sources and more than two classes.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.