• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE CODING-SPREADING TRADEOFF PROBLEM IN FINITE-SIZED SYNCHRONOUS DS-CDMA SYSTEMS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1058_sip1_m.pdf
    Size:
    588.4Kb
    Format:
    PDF
    Description:
    azu_etd_1058_sip1_m.pdf
    Download
    Author
    Tang, Zuqiang
    Issue Date
    2005
    Keywords
    DS-CDMA
    LDPC
    Coding-Spreading Tradeoff
    Advisor
    Ryan, William E.
    Committee Chair
    Ryan, William E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation provides a comprehensive analysis of the coding-spreading tradeoff problem in finite-sized synchronous DS-CDMA systems. In contrast to the large system which has a large number of users, the finite-sized system refers to a system with a small number of users. Much work has been performed in the past on the analysis of the spectral efficiency of synchronous DS-CDMA systems and the associated coding-spreading tradeoff problem. However, most of the analysis is based on the large-system assumptions. In this dissertation, we focused on finite-sized systems with the help of numerical methods and Monte-Carlo simulations.Binary-input achievable information rates for finite-sized synchronous DS-CDMA systems with different detection/decoding schemes on AWGN channel are numerically calculated for various coding/spreading apportionments. We use these results to determine the existence and value of an optimal code rate for a number of different multiuser receivers, where optimality is in the sense of minimizing the SNR required for reliable multiuser communication. Our results are consistent with the well-known fact that all coding (no spreading) is optimal for the maximum a posteriori receiver.Simulations of the LDPC-coded synchronous DS-CDMA systems with iterative multiuser detection/decoding and MMSE multiuser detection/single-user decoding are also presented to show that the binary-input capacities can be closely approached with practical schemes. The coding-spreading tradeoff is examined using these LDPC code simulation results, where agreement with the information-theoretic results is demonstrated.We extend our work to the DS-CDMA systems on two idealized Rayleigh flat-fading channels: the chip-level flat-fading (CLFF) and the (code) symbol-level flat-fading (SLFF). These models represent ideal fast fading and slow fading channels, respectively. Both information-theoretic results and LDPC code simulation results are presented to show the effects of channel fading on system performance and the coding-spreading tradeoff. It is shown that fast fading can be beneficial to system performance under the condition of perfect channel state information at receiver, but slow fading is very harmful. Slow fading also increases the importance of coding greatly, compared to the AWGN and fast fading.Finally, we present some comparisons with large-system results on AWGN and CLFF channels, which show both consistencies and discrepancies.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.