• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Surface Pretreatment for Thin Film Surface Reactivity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1757_sip1_m.pdf
    Size:
    6.081Mb
    Format:
    PDF
    Description:
    azu_etd_1757_sip1_m.pdf
    Download
    Author
    Thorsness, Adam G.
    Issue Date
    2006
    Committee Chair
    Muscat, Anthony
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The formation of a self-limiting interface layer for the integration of high-k dielectric materials into silicon based transistor devices was investigated. Chlorine atoms were used to activate a liquid cleaned Si(100) surface for the reaction with H₂O(g). A saturation coverage of 0.8 monolayers of chlorine atoms was deposited on a hydrogen terminated Si(100) surface by exposure to Cl₂ gas at 10 Torr under ultraviolet illumination at 300 K. The self-limiting interface layer was formed by exposing the chlorine terminated surface to water vapor at P(HOH)=100 Torr and temperatures ranging from 325 to 373 K. The coverage of oxygen resulting from H₂O exposures was directly correlated with a decrease in the Cl coverage and ranged from 0.2-1.2 monolayers. Complete removal of surface chlorine was achieved by 100°C water exposures in 45 minutes. The final chapter summarizes three papers published which describe the moisture absorption into borophosphosilicate glass (BPSG) films and an investigation of a gas phase etching process applied to borosilicate glass (BSG), phosphosilicate glass (PSG), and BPSG films. The absorption and reaction of water with doped and undoped oxides as well as the effect of annealing was investigated using a variety of annealed BPSG films. Asdeposited (AD) and annealed (500, 750, and 900°C) borophosphosilicate glass (BPSG) films were characterized during aging, baking, and etching using transmission Fourier transform infrared spectroscopy and ellipsometry. The water content in the BPSG films increased steadily during storage at ambient conditions. The B-O bond was shown to be the primary site for water adsorption on the surface of the film. Water absorption into the film was consistent with a reaction-limited model. It is likely that the water present reacted readily with P=O groups forming P-O and PO-H. This slower reaction with P=O species is proposed as the rate-limiting step for water absorption. The etching of BPSG with gas phase HF produced a low volatility residue consisting of a mixture of boric acid B(OH)₃, phosphoric acid H₃PO₄, and water. Partial removal of the residue was accomplished using both direct and indirect UV–Cl₂ processes.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.