Show simple item record

dc.contributor.advisorBarton, Jennifer Ken_US
dc.contributor.advisorRomanowski, Mareken_US
dc.contributor.authorTroutman, Timothy
dc.creatorTroutman, Timothyen_US
dc.date.accessioned2011-12-06T13:33:03Z
dc.date.available2011-12-06T13:33:03Z
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/10150/194979
dc.description.abstractAdvanced optical imaging techniques are emerging as useful ways to screen tissues for the presence of cancer. Plasmon resonant nanoparticles have unique optical properties that make them ideal for use as optical contrast agents. The capacity of these particles to serve a multifunctional role dependent on their composition and the intensity of incident light enables them to serve as diagnostic tools and to provide the therapeutic capability of photo-thermal energy conversion or the controlled release of an encapsulated agent. Likewise, the ability to degrade into components of a clearable size may enable the clinical translation of these types of particles.These properties were demonstrated by means of experiments in the support of three specific aims. The first specific aim was to determine whether the unique and tunable optical properties of nanorods lend them to generate signal in advanced optical imaging techniques, and that nanorods can facilitate photo-thermal conversion. The second specific aim was to show that liposomes can serve as a scaffold for the support of an array of gold nanodots to generate a structure that exhibit tunable plasmon resonant characteristics and a resultant ability to generate signal in optical imaging techniques while having the capability to degrade into inert particles of a size that can be readily cleared from the body via the kidney. The final specific aim was to determine whether the gold-coated liposomes of the second specific aim can serve as system for light-based delivery of an encapsulated agent in addition to its role as an optical contrast agent and its biodegradation capacity.Plasmon resonant nanorods and plasmon resonant gold-coated liposomes were generated by reducing free gold from solution onto surfactant coated seed particles and phospholipid liposomes, respectively. Both structures demonstrated the ability to generate signal in optical coherence tomography and in multi-photon confocal microscopy images. Nanorods in high intensity light demonstrate a capacity to mediate photo-thermal energy conversion. While, in similar conditions, gold-coated liposomes are shown to release their contents. Gold-coated liposomes are also shown to degrade to bioinert components of a size reasonable for rapid renal clearance using either surfactant or enzyme.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectgold-coated liposomeen_US
dc.subjectoptical coherence tomographyen_US
dc.subjectcontrast agenten_US
dc.subjectnanoen_US
dc.subjectplasmon resonanceen_US
dc.titlePlasmon Resonant Nanostructures of Gold for Biomedical Applicationsen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairBarton, Jennifer Ken_US
dc.identifier.oclc659749546en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberLynch, Ronalden_US
dc.contributor.committeememberWitte, Russellen_US
dc.identifier.proquest2900en_US
thesis.degree.disciplineBiomedical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePhDen_US
refterms.dateFOA2018-08-25T05:06:30Z
html.description.abstractAdvanced optical imaging techniques are emerging as useful ways to screen tissues for the presence of cancer. Plasmon resonant nanoparticles have unique optical properties that make them ideal for use as optical contrast agents. The capacity of these particles to serve a multifunctional role dependent on their composition and the intensity of incident light enables them to serve as diagnostic tools and to provide the therapeutic capability of photo-thermal energy conversion or the controlled release of an encapsulated agent. Likewise, the ability to degrade into components of a clearable size may enable the clinical translation of these types of particles.These properties were demonstrated by means of experiments in the support of three specific aims. The first specific aim was to determine whether the unique and tunable optical properties of nanorods lend them to generate signal in advanced optical imaging techniques, and that nanorods can facilitate photo-thermal conversion. The second specific aim was to show that liposomes can serve as a scaffold for the support of an array of gold nanodots to generate a structure that exhibit tunable plasmon resonant characteristics and a resultant ability to generate signal in optical imaging techniques while having the capability to degrade into inert particles of a size that can be readily cleared from the body via the kidney. The final specific aim was to determine whether the gold-coated liposomes of the second specific aim can serve as system for light-based delivery of an encapsulated agent in addition to its role as an optical contrast agent and its biodegradation capacity.Plasmon resonant nanorods and plasmon resonant gold-coated liposomes were generated by reducing free gold from solution onto surfactant coated seed particles and phospholipid liposomes, respectively. Both structures demonstrated the ability to generate signal in optical coherence tomography and in multi-photon confocal microscopy images. Nanorods in high intensity light demonstrate a capacity to mediate photo-thermal energy conversion. While, in similar conditions, gold-coated liposomes are shown to release their contents. Gold-coated liposomes are also shown to degrade to bioinert components of a size reasonable for rapid renal clearance using either surfactant or enzyme.


Files in this item

Thumbnail
Name:
azu_etd_2900_sip1_m.pdf
Size:
4.203Mb
Format:
PDF
Description:
azu_etd_2900_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record