• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Supermassive Black Hole Activity in the Cosmic Evolution Survey

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10896_sip1_m.pdf
    Size:
    3.624Mb
    Format:
    PDF
    Description:
    azu_etd_10896_sip1_m.pdf
    Download
    Author
    Trump, Jonathan Russell
    Issue Date
    2010
    Advisor
    Impey, Christopher D.
    Committee Chair
    Impey, Christopher D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    I investigate active supermassive black holes, also called active galactic nuclei (AGNs). My tool for this work is the Cosmic Evolution Survey (COSMOS), a deep multiwavelength survey over 2 deg² of the sky. I describe the COSMOS AGN optical spectroscopy campaign, and present the largest AGN sample to date with full multiwavelength (radio, IR, optical, UV and X-ray) spectral energy distributions. Studying the COSMOS AGN sample reveals a unified model for supermassive black hole activity based on accretion rate, as shown by the following main results. (1) Classically “obscured” (Type 2) AGNs are more prevalent at higher redshifts and lower luminosities, suggesting that these objects accrete through low-level stochastic disk feeding by their hosts. (2) The prescence of broad emission lines in an AGN requires a minimum accretion rate (L/L(Edd) > 0.01). Broad-line (Type 1) AGNs in COSMOS span a large range of accretion rates (0.01 < L/L(Edd) < 1), in contrast to results from previous, shallower surveys, and broad-line AGNs become more optically luminous as accretion rate increases. (3) Lineless, “optically dull” AGNs have very different SEDs than broad-line and narrow-line AGNs, with comparatively brighter X-ray emission, redder optical continua, no infrared hot dust, and stronger radio emission. While up to 2/3 of optically dull AGNs may be “normal” AGNs diluted by extranuclear host galaxy light, at least 1/3 are best described as unobscured, intrinsically weak AGNs. (4) At low accretion rates, material accreting onto an AGN changes from a thin disk to an advection-dominated flow near the black hole, resulting in very different observed properties: the broad-line region disappears, radio jets become more important, and the hot dust signature changes. In contrast to previous unification models, observations indicate that most of the narrow-line and lineless AGNs in COSMOS are best described as weakly accreting AGNs. We conclude by noting a few predictions and observational tests to further investigate our model of AGN unification by accretion rate.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.