• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ultrahigh-Resolution Endoscopic Optical Coherence Tomography for In Vivo Mouse Colonoscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2252_sip1_m.pdf
    Size:
    6.608Mb
    Format:
    PDF
    Description:
    azu_etd_2252_sip1_m.pdf
    Download
    Author
    Tumlinson, Alexandre Rex
    Issue Date
    2007
    Keywords
    dispersion
    chromatic
    interferometer
    endoscope
    cancer
    Advisor
    Barton, Jennifer K
    Committee Chair
    Barton, Jennifer K
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In vivo monitoring of mouse models of colon cancer promises to reduce the cost of research by improving sacrifice timing and allowing serial studies that observe the progression of disease and drug efficacy in a relatively small set of animals. Optical coherence tomography (OCT) is an optical analog of ultrasound imaging, capable of minimally-invasive mapping of light scatter intensity up to 2 mm deep in tissue. In this work, factors limiting resolution in OCT were examined and devices were created and applied to mouse colon imaging that extended the state-of-the-art in endoscopic ultrahigh-resolution OCT. First, axial chromatic aberration of the objective optics acts as a spectral filter in the sample arm limiting the effective bandwidth of the system. An achromatized endoscope design was demonstrated that achieved axial resolution of 2.3 mum in tissue and 4.4 mum lateral spot diameter with 101 dB sensitivity when interfaced with a time domain OCT system utilizing a 10-femtosecond laser (bandwidth=150 nm FWHM, center wavelength=800 nm). Second, dispersion matching between the sample and reference arms presents the practical resolution limit to endoscopic implementations including a separate, fiber-based reference arm. A second endoscope incorporated the reference arm into the tip of the endoscope using a novel custom beamsplitter prism and achieved 2.4 mum axial resolution in tissue without adjustments for pathlength or dispersion matching when interfaced with a spectrometer-based frequency domain OCT system and a similar laser. Third, non-linear dispersion of the sample media with respect to wavelength causes distortion and broadening of the axial point spread function when data are sampled uniformly in optical frequency. An experiment was performed on high dispersion glass to demonstrate that dispersion artifact free imaging can be achieved without post process corrections if the samples are acquired at equal intervals of media index of refraction divided by vacuum wavelength. Finally, other microscopic modalities that depend on tissue scatter intensity are used to find the origins of scatter in the mouse colonic mucosa. These observations are used to explain unexpected features found in ultrahigh-resolution tomograms collected with the two endoscopes presented.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Biomedical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.