• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Phylogenetically Conserved Stress Responses to Discover Natural Products with Anticancer Activity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1078_sip1_m.pdf
    Size:
    3.975Mb
    Format:
    PDF
    Description:
    azu_etd_1078_sip1_m.pdf
    Download
    Author
    Turbyville, Thomas Jefferson
    Issue Date
    2005
    Keywords
    Heat shock response
    inflammatory response
    oxidative stress
    thermotolerance
    drug discovery
    secondary metabolites
    Advisor
    Gunatilaka, Leslie
    Whitesell, Luke
    Committee Chair
    Gunatilaka, Leslie
    Whitesell, Luke
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    One unique feature of cancer cells that can be exploited for anticancer drug discovery is their dependence on their own cellular stress responses to survive the stressful acidotic, hypoxic and nutrient-deprived conditions within the tumor. Reasoning that desert organisms surviving under stressful conditions may have evolved to produce small molecule metabolites capable of modulating heat shock protein 90 (Hsp90) function, and/or other cell stress responses, we employed the cellular heat shock response in a moderate-throughput phenotypic assay. This strategy has resulted in the isolation and characterization of a number of small molecule natural products with heat shock induction activity from these organisms. Three such natural products are the subject of this study.In a limited structure-activity relationship (SAR) study, a previously known Hsp90 inhibitor radicicol (RAD), and several structurally related molecules including the fungal metabolite monocillin 1 (MON) were found to interact with Hsp90. In addition, RAD and MON were shown to lead to the degradation of Hsp90 client proteins involved in the cancer cell survival the estrogen receptor (ER) and the insulin-like growth factor receptor 1 (IGF-1R).We further characterized MON and showed that by targeting the molecular chaperone Hsp90, this compound induces components of the heat shock response at the transcriptional and translational levels, and leads to the acquisition of a thermotolerant phenotype in seedlings of the plant Arabidopsis thaliana. These findings support our hypothesis that there is ecological significance to the elaboration of small molecules that target stress responses.A number of extracts active in our phenotypic assay contained small molecules with no apparent Hsp90 activity. One such extract afforded terrecyclic acid A (TCA) with significant anti-tumor activity against a panel of human cancer cell lines. To characterize the biological activities of TCA we examined three key stress responsesthe heat shock, oxidative, and inflammatory responsesand show that TCA destabilizes these pathways associated with cancer cell survival through induction of oxidative stress (ROS), and inhibition of NF-kappaB transactivation.The isolation of RAD, MON and TCA from Sonoran desert organisms provides proof of principle that we have developed an effective strategy for the discovery of small molecule modulators of cellular stress responses that can serve as leads for the development of new anticancer drugs with novel mechanisms of action.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Cancer Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.