• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Automated Analysis Techniques for Online Conversations with Application in Deception Detection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1111_sip1_m.pdf
    Size:
    1.268Mb
    Format:
    PDF
    Description:
    azu_etd_1111_sip1_m.pdf
    Download
    Author
    Twitchell, Douglas P.
    Issue Date
    2005
    Keywords
    computer-mediated communication
    deception detection
    speech act theory
    text mining
    Advisor
    Nunamaker, Jay F
    Committee Chair
    Nunamaker, Jay F
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Email, chat, instant messaging, blogs, and newsgroups are now common ways for people to interact. Along with these new ways for sending, receiving, and storing messages comes the challenge of organizing, filtering, and understanding them, for which text mining has been shown to be useful. Additionally, it has done so using both content-dependent and content-independent methods.Unfortunately, computer-mediated communication has also provided criminals, terrorists, spies, and other threats to security a means of efficient communication. However, the often textual encoding of these communications may also provide for the possibility of detecting and tracking those who are deceptive. Two methods for organizing, filtering, understanding, and detecting deception in text-based computer-mediated communication are presented.First, message feature mining uses message features or cues in CMC messages combined with machine learning techniques to classify messages according to the sender's intent. The method utilizes common classification methods coupled with linguistic analysis of messages for extraction of a number of content-independent input features. A study using message feature mining to classify deceptive and non-deceptive email messages attained classification accuracy between 60\% and 80\%.Second, speech act profiling is a method for evaluating and visualizing synchronous CMC by creating profiles of conversations and their participants using speech act theory and probabilistic classification methods. Transcripts from a large corpus of speech act annotated conversations are used to train language models and a modified hidden Markov model (HMM) to obtain probable speech acts for sentences, which are aggregated for each conversation participant creating a set of speech act profiles. Three studies for validating the profiles are detailed as well as two studies showing speech act profiling's ability to uncover uncertainty related to deception.The methods introduced here are two content-independent methods that represent a possible new direction in text analysis. Both have possible applications outside the context of deception. In addition to aiding deception detection, these methods may also be applicable in information retrieval, technical support training, GSS facilitation support, transportation security, and information assurance.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Management Information Systems
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.