• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure-Function Relationships in Microviridae External Scaffolding Proteins

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2126_sip1_m.pdf
    Size:
    2.775Mb
    Format:
    PDF
    Description:
    azu_etd_2126_sip1_m.pdf
    Download
    Author
    Uchiyama, Asako
    Issue Date
    2007
    Keywords
    phix174
    bacteriophage
    virus assembly
    scaffolding protein
    Committee Chair
    Fane, Bentley A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Microviruses (canonical members: øX174, G4, and alpha3) are T=1 icosahedral virions with a two scaffolding protein-mediated assembly pathway. The external scaffolding protein D mainly mediates the assembly of coat protein pentamers into procapsids. The results of previous genetic studies suggest that helix 1 of D protein may act as a substrate specificity domain, mediating the initial coat-scaffolding protein recognition in a species-specific manner. In an effort to elucidate a more mechanistic model, chimeric external scaffolding proteins were initially constructed in a plasmid, which over-expresses the protein, between the closely related phages G4 and øX174. The results of biochemical and genetic analyses identify coat-scaffolding domains needed to initiate procapsid formation and provide more evidence, albeit indirect, that the pores are the site of DNA entry during the packaging reaction.However, protein concentrations higher than those found in typical infections could drive reactions that may not occur under physiological conditions. In order to elucidate a more detailed mechanistic model, the same chimeric external scaffolding gene was placed directly in the øX174 genome, and the chimeric virus was characterized. The results of the genetic and biochemical analyses indicate that helix 1 most likely mediates the nucleation reaction for the formation of the first assembly intermediate containing the external scaffolding protein. Mutants that can more efficiently use the chimeric scaffolding protein were isolated. These second-site mutations appear to act on a kinetic level, shortening the lag phase before virion production.Finally, by using improved protocols, two novel early assembly intermediates, the 9S* and 12S* particles, have been isolated and characterized. The 9S* particle consists of a coat protein pentamer associated with the internal scaffolding protein. The 12S* intermediate is a complex of a 9S* particle with the major spike protein, and the DNA pilot protein. The existence of internal scaffolding and DNA pilot proteins that were absent in previously characterized intermediates suggest that 9S* and 12S* particles are biologically active intermediates. Moreover, preliminary in vitro assembly experiments performed with the 12S* particle and exogenous external scaffolding protein yield empty capsids-like particle, strongly suggesting that these are the physiologically relevant intermediates.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Microbiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.