• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Opioid-induced Hyperalgesia: Underlying Mechanisms and Clinical Relevance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2475_sip1_m.pdf
    Size:
    1.507Mb
    Format:
    PDF
    Description:
    azu_etd_2475_sip1_m.pdf
    Download
    Author
    Vardanyan, Anna
    Issue Date
    2007
    Keywords
    bone
    cancer
    morphine
    pain
    Advisor
    Porreca, Frank
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Metastatic bone cancer causes severe pain that is primarily treated with opioids. A recently developed model of bone cancer pain was used to evaluate the effects of sustained morphine treatment. In cancer-treated mice, morphine enhanced spontaneous and evoked pain; these effects were dose-dependent and naloxone-sensitive. SP and CGRP positive DRG cells did not differ between sarcoma or control mice, but were increased following morphine in both groups. Morphine increased ATF-3 expression only in DRG cells of sarcoma mice. Morphine did not alter tumor growth in vitro or in vivo but increased sarcoma-induced bone destruction and incidence of spontaneous fracture in a dose- and naloxone-sensitive manner. Morphine increased osteoclast activity suggesting enhancement of sarcoma-induced osteolysis. Thus, morphine treatment may "add-on" additional mechanisms of pain beyond those induced by sarcoma. Despite the potential clinical significance, the exact mechanisms of opioid-induced hypersensitivity remain unknown. The vanilloid 1 receptor (TRPV1) is a molecular integrator of noxious stimuli. Sustained morphine elicited thermal and tactile hypersensitivity in WT, but not TRPV1 KO mice. Sustained morphine enhanced capsaicin-induced flinching and plasma extravasation in rats, indicating increased activity of these receptors in the periphery. Immunohistochemical studies indicate increase in TRPV1 expression in DRG and sciatic nerve, but not spinal cord, suggesting increased trafficking of TRPV1 channel to the periphery. Possible mechanisms of this enhanced expression and function of TRPV1 channels is activation of p38 MAPK. Sustained intrathecal infusion of p38 MAPK inhibitor prevents morphine-induced hypersensitivity and enhanced capsaicin-induced flinching, indicating the role of p38MAPK in the development of morphine-induced pain, possibly through sensitization of TRPV1 receptors. Acute administration of p38 MAPK inhibitor reversed morphine-induced pain suggesting the importance of p38 MAPK in the maintenance of morphine-induced hypersensitivity, likely through activation of TRPV1 channel. Sustained morphine also up-regulates NGF content in skin, which is then transported to DRG neurons where phosporilation of p38MAPK takes place. Single injection of anti-NGF peptibody blocked the development of morphine-induced hypersensitivity, enhanced capsaicin-induced flinching and plasma extravasation. Co-treatment with these compounds blocks the development of morphine-induced hyperalgesia and may optimize treatment of chronic pain states, like bone cancer pain.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Medical Pharmacology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.