• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Photoinitiated Dynamics of Cluster Anions via Photoelectron Imaging and Photofragment Mass Spectrometry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2693_sip1_m.pdf
    Size:
    9.785Mb
    Format:
    PDF
    Description:
    azu_etd_2693_sip1_m.pdf
    Download
    Author
    Velarde, Luis Antonio
    Issue Date
    2008
    Keywords
    Photoelectron Imaging
    Cluster Anions
    Photodissociation
    Electron Scattering
    Advisor
    Sanov, Andrei M.
    Committee Chair
    Sanov, Andrei M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Mass-selected cluster anions are employed as model micro-solutions to study solvent effects on the structural motifs and electronic structure of anionic solutes, including the roles of the solvent in controlling the outcomes of photochemical processes. Interaction of light with cluster anions can potentially lead to cluster photodissociation in addition to photodetachment. We investigate these competing processes by means of photoelectron imaging spectroscopy combined with tandem time-of-flight (TOF) mass spectrometry. Photoelectron images are reported for members of the [(CO2)n(H2O)m]- cluster series. For homogeneous solvation, the photodetachment bands show evidence of cluster core switching between a CO2- monomer anion and a covalent (CO2)2- dimer anionic core, confirming previous observations. The Photoelectron Angular Distributions (PADs) of the monomer- and dimer-based clusters reveal an interference effect that result in similar PADs. Stabilization of the metastable CO2- anion by water solvent molecules is highlighted because its ability to "trap" the excess electron on CO2. Most surprising is the effect of the water solvent in quenching the autodetachment channel in excited states normally embedded in the electron detachment continuum, allowing excited CO2-(H2O)m clusters to follow reaction paths that lead to cluster fragmentation. Observed O- based photoproducts are attributed to photodissociation of the CO2- cluster core and are dominant for small parent clusters, whereas a water evaporation channel dominates for larger clusters. Addition of a second CO2 to these clusters is shown to preferentially form monomer based clusters, whose photodissociation exhibit an additional CO3- based channel, characteristic of a photoinitiated intracluster ion-molecule reaction between nascent O- and the additional CO2 solvent molecule. Changes in the PADs of NO- are monitored as a function of electron kinetic energy for the NO-(N2O)n and NO-(H2O)n cluster anions. In contrast with hydration, angular distributions become progressively more isotropic for the N2O case, particularly when the photoelectron kinetic energies are in the vicinity of the 2Pi shape resonance of the N2O solvent molecules. First time observation of the CH3SOCH- anion of dimethylsulfoxide is reported along with the photoelectron images of this organic anion and of the monohydrated cluster. Observed photodissociation products are HCSO- and SO-.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.