• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SCANNING CURRENT SPECTROSCOPY: A CONDUCTING PROBE ATOMIC FORCE MICROSCOPY TECHNIQUE FOR EXPLORING THE PHYSICAL AND ELECTRONIC PROPERTIES OF METAL OXIDE/ORGANIC INTERFACES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10781_sip1_m.pdf
    Size:
    14.37Mb
    Format:
    PDF
    Description:
    azu_etd_10781_sip1_m.pdf
    Download
    Author
    Veneman, Peter Alexander
    Issue Date
    2009
    Keywords
    AFM
    heterogeneous electrode
    ITO
    organic photovoltaic
    scanning current spectroscopy
    Advisor
    Armstrong, Neal R.
    Committee Chair
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Organic photovoltaics (OPVs) offer the prospect of inexpensive processing compared with conventional crystalline semiconductor cells. These cells are still lower in efficiency than their inorganic counterparts, in part because a detailed understanding of the role that interfaces play in these devices is lacking. The electronic properties of the surface of the common transparent electrode Indium:Tin Oxide (ITO) have been studied both on a macroscopic and nanoscopic scale, and the interface between ITO and organic materials has been studied on a macroscopic scale as well. Little work has been done on the nanoscopic properties of the ITO/organic interface. This dissertation introduces a new conducting-probe atomic force microscope (CP-AFM) technique, Scanning Current Spectroscopy (SCS), for probing the nanoscopic lateral variation in the electronic properties of this interface, and demonstrates its utility by examining the ITO/copperphthalocyanine (CuPc) interface. SCS demonstrates large lateral variations in the hole collection efficiency at that interface on a nanometer length scale, and that the distribution of these variations is affected by ITO pretreatment. Measurements on OPVs demonstrate that the performance of these devices is dependant on the nanoscopic lateral variation in surface properties that SCS measures, and that in the case of the ITO/CuPcinterface SCS explains the observed device behavior better than techniques that yield macroscopic average electronic properties, such as photoelectron spectroscopy. Additionally, this dissertation discusses advances made in the design of an integrated optical refractive index sensor. The sensor uses organic light-emitting diodes (OLEDs) and OPVs as integrated light-sources and detectors on top of a slab waveguide substrate. The platform offers potentially high sensitivities to refractive index changes (and the selective binding of chemical and biological analytes), and is amenable to largescale integration for on-chip multiplexed detection. The refractive index response has been demonstrated previously, but the performance was limited by electrical noise and OLED drift. The use of different absorbing species in the OPV, integration of multiplesensors on a single substrate, addition of a reference channel to monitor OLED drift andthe use of lock-in amplification for signal processing allow the sensor to detect changesof 10-4 refractive index units.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.