• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    STUDIES OF MULTI-PHOTOCHROMIC LIQUID CRYSTALLINE DENDRIMERS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1245_sip1_m.pdf
    Size:
    43.34Mb
    Format:
    PDF
    Description:
    azu_etd_1245_sip1_m.pdf
    Download
    Author
    Villavicencio, Ovette
    Issue Date
    2005
    Keywords
    Chemistry
    Committee Chair
    McGrath, Dominic V.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The work described in this research entailed the preparation and studies of photochromic dendritic compounds with irradiation wavelength dependent properties and dendritic liquid crystalline compounds with photochromic response. Photochromic dendrons comprised of varying polar head groups and a dendritic shell of long alkyl chains were studied at both the air-water and air-solid interfaces. At the air-water interface, only an optimal balance between the areas of the polar head groups and the dendritic shells results in observable and significant photomechanical response. At the air-solid interface, all the dendrons formed smooth monolayers with photochromic response with the bulky dendritic shell prohibiting aggregation. Within the monolayers, the molecules are in a tilted molecular orientation. Thermotropic properties of small molecule and multi-photochromic dendrimers were investigated by differential scanning calorimetry, polarized optical microscopy, and powder X-ray diffraction. Dendritic azobenzene acids showed a propensity to form mesophases at higher generations. In the multi-photochromic dendrimers, the nonlinear tris(azobenzene)s formed hexagonal columnar liquid crystalline phases in the zeroth and first generation with a possible nematic phase observed in the second generation. The zeroth generation linear tris(azobenzene) formed a smectic phase with a tilt angle of 36° and a sandy mosaic texture. Bragg spacings in the low angle region of the X-ray diffraction of the first generation indicated a columnar hexagonal liquid crystalline phase whereas the second generation linear dendrimer has 1 sharp peak indicative of a possible nematic phase. Spectroscopic studies indicate 2 wavelengths of maximum absorption for the linear dendrimers at 350 nm and 313 nm respectively. However, the wavelength of irradiation did not impact the rates of thermal back isomerization. In comparing the linear and nonlinear series, the arrangement of the azobenzenes within the dendritic framework (radial vs linear) had no effect on the rates of back isomerization as all the rates were within an order of magnitude of each other. No generational effects were observed in either types of tris(azobenzene)s. The average activation energy for the linear series was 21.8 kcal/mol and 20.5 kcal/mol for the nonlinear. Isomerization of both linear and nonlinear dendrimers leads to smaller hydrodynamic volumes. The largest decrease in volume occurred in the zeroth generation in both series. The linear dendrimers decreased in hydrodynamic volume upon irradiation at both 331 nm and 350 nm with the greatest change occurring under 350 nm irradiation.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.