• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analytical Development of Capacity Design Factors for a Precast Concrete Diaphragm Seismic Design Methodology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2479_sip1_m.pdf
    Size:
    2.589Mb
    Format:
    PDF
    Description:
    azu_etd_2479_sip1_m.pdf
    Download
    Author
    Wan, Ge
    Issue Date
    2007
    Keywords
    Precast Concrete Diaphragm
    Committee Chair
    Fleischman, Robert B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The primary objective of the dissertation work is to examine the capacity of precast concrete diaphragms. This work is part of a multi-university research effort to develop a new seismic design methodology for precast/prestressed concrete floor diaphragms. To accomplish this, two-dimensional finite element (FE) models of precast floor diaphragms are created, including new elements to match the response of reinforcing details under combined forces. Using these models, nonlinear static "pushover" analyses are performed by applying body forces in the plane of the floor.The analyses are composed of three major parts:(1) Parametric studies to determine the required diaphragm shear strength relative to design (flexural) strength, termed "shear reinforcement overstrength", to promote a ductile mechanism in precast diaphragms. The performance of precast diaphragms with different shear reinforcement overstrength is examined. Appropriate shear reinforcement overstrength design factors are proposed to produce certain performance targets, in terms of a number of key parameters related to diaphragm geometry and the properties of the diaphragm reinforcing details.(2) Parametric studies to examine the effects of "secondary" diaphragm elements (spandrels, internal beams) on precast diaphragm behavior. Though not directly counted in design to participate diaphragm action, the secondary elements and their connections to the main diaphragm may modify the strength, stiffness and deformation capacity of the diaphragm. Analytical studies are performed to examine their effect on the global characteristics and local demands of precast floor diaphragms. The parameters evaluated include the characteristics of the connection details, the seismic hazard level used in design, diaphragm geometry, and layouts of spandrels and internal beams.(3) Development of a rational method for calculating the service stiffness and yield strength of precast concrete diaphragms. The method involves input of diaphragm geometry and reinforcing details. The method is verified analytically through comparisons to a set of FE analyses for an idealized diaphragm representation (regular single span diaphragm idealized with simple end supports). The method verified for a single set of diaphragm reinforcement details is used to estimate the properties over a range of untopped and topped diaphragm systems. Consideration of spandrel and internal beams in the method is discussed.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Civil Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.