• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Dorsal-Ventral Patterning in the Mud Snail, Ilyanassa obsoleta

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1361_sip1_m.pdf
    Size:
    19.81Mb
    Format:
    PDF
    Description:
    azu_etd_1361_sip1_m.pdf
    Download
    Author
    Wandelt, Jessica Eve
    Issue Date
    2005
    Keywords
    Molecular & Cellular Biology
    Committee Chair
    Nagy, Lisa M
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The experiments reported here describe mechanisms involved in the establishment of the dorsal-ventral axis in the mud snail, Ilyanassa obsoleta. Ilyanassa and other spiralians utilize an embryonic organizer to induce dorsal identity, and thus establish the bilateral axis. The D macromere embryonic organizer in Ilyanassa is specified at the four-cell stage by the inheritance of the polar lobe, but does not function as an inductive center until the 24-cell stage. Previously it was assumed that the D macromere of Ilyanassa functioned autonomously through its inheritance of the polar lobe. I have found this is not the case. Rather, I describe the role that the micromeres play in the activation of the D macromere organizer. Specifically, I have found that micromeres of the first and second quartet are necessary for at least three known characteristics of the D macromere: the activation of MAPK in the D macromere, the division of the D macromere, and the inductive capacity of the D macromere. Thus, while the polar lobe is necessary for D macromere function, its inheritance does not provide the D macromere with functional autonomy.The localized activation of MAPK was the first molecular component of dorsal-ventral patterning to be identified in Ilyanassa and other spiralians. In addition to being activated in the D macromere organizer, MAPK is also activated in the micromeres that are induced by the D macromere. I undertook a pharmacological screen to identify other components involved in dorsal-ventral patterning. I have found that a member of the Protein Kinase C (PKC) family is also involved in the establishment of the dorsal-ventral axis in Ilyanassa. Inhibition of PKC disrupts patterning, resulting in a radialized animal. In addition, I have found that PKC functions in the same path as MAPK. PKC is necessary for the proper activation of MAPK in the D macromere organizer and the micromeres. These results suggest that either the same transduction pathway is used repeatedly in the establishment of the dorsal-ventral axis or that patterning is the result of one global signal. These results drastically change our view of dorsal-ventral patterning during spiralian development.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Molecular & Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.