• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DESIGN, MODELING AND TESTING OF OPTICAL SURFACES IN ILLUMINATION OPTICS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11319_sip1_m.pdf
    Size:
    5.257Mb
    Format:
    PDF
    Description:
    azu_etd_11319_sip1_m.pdf
    Download
    Author
    Wang, Lirong
    Issue Date
    2010
    Keywords
    Optical Sciences
    Advisor
    Sasian, Jose M.
    Committee Chair
    Sasian, Jose M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation investigates design, modeling and testing methods of optical surfaces in illumination optics.The main focus of this dissertation is to investigate the faceted non-imaging specular light reflector that is often used to generate a uniform, incoherent illuminance distribution. General design methodologies of faceted light reflectors are overviewed. Several design examples of faceted light reflectors including a novel LED flashlight, a novel microscope illuminator and a 20-m segmented paraboloidal solar collector are discussed and analyzed.An accurate source model is important for illumination system design. In this dissertation, an analytic short-arc source modeling method is developed and integrated in the illumination design software ZEMAX.In addition to the design and modeling work, this dissertation explores a flexible, low-cost and robust Software Configurable Optical Test System (SCOTS) for testing specular free-form surfaces that are often used in illumination systems. The application of this testing system in measuring a 3-m segmented paraboloidal solar reflector is investigated. Preliminary SCOTS test results for an F/0.2 concave automotive headlight reflector are introduced. In addition to testing the surfaces of illumination optics using SCOTS, the applications of SCOTS in the measurement of large, high precision optics are also explored and briefly discussed.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.