• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Estimating Signal Features from Noisy Images with Stochastic Backgrounds

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2947_sip1_m.pdf
    Size:
    3.505Mb
    Format:
    PDF
    Description:
    azu_etd_2947_sip1_m.pdf
    Download
    Author
    Whitaker, Meredith Kathryn
    Issue Date
    2008
    Keywords
    estimation theory
    image science
    signal processing
    feature estimation
    scanning-linear
    Advisor
    Barrett, Harrison H.
    Committee Chair
    Barrett, Harrison H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Imaging is often used in scientific applications as a measurement tool. The location of a target, brightness of a star, and size of a tumor are all examples of object features that are sought after in various imaging applications. A perfect measurement of these quantities from image data is impossible because of, most notably, detector noise fluctuations, finite resolution, sensitivity of the imaging instrument, and obscuration by undesirable object structures. For these reasons, sophisticated image-processing techniques are designed to treat images as random variables. Quantities calculated from an image are subject to error and fluctuation; implied by calling them estimates of object features.This research focuses on estimator error for tasks common to imaging applications. Computer simulations of imaging systems are employed to compare the estimates to the true values. These computations allow for algorithm performance tests and subsequent development. Estimating the location, size, and strength of a signal embedded in a background structure from noisy image data is the basic task of interest. The estimation task's degree of difficulty is adjusted to discover the simplest data-processing necessary to yield successful estimates.Even when using an idealized imaging model, linear Wiener estimation was found to be insufficient for estimating signal location and shape. These results motivated the investigation of more complex data processing. A new method (named the scanning-linear estimator because it maximizes a linear functional) is successful in cases where linear estimation fails. This method has also demonstrated positive results when tested in realistic simulations of tomographic SPECT imaging systems. A comparison to a model of current clinical estimation practices found that the scanning-linear method offers substantial gains in performance.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.