• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mechanisms Underlying the Pharmacologic Reversal of Genetic and Epigenetic Components of Tumor Suppressor Gene Silencing in Human Breast Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1660_sip1_m.pdf
    Size:
    1.608Mb
    Format:
    PDF
    Description:
    azu_etd_1660_sip1_m.pdf
    Download
    Author
    Wozniak, Ryan Joseph
    Issue Date
    2006
    Keywords
    Pharmacology
    Cancer
    Genetics
    Epigenetics
    Advisor
    Futscher, Bernard W.
    Committee Chair
    Futscher, Bernard W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In women, tumors of the breast remain the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths. One of the hallmarks of carcinogenesis is the abnormal silencing of tumor supprsssor genes by both genetic and epigenetic alterations, leading to defects in cell-cycle control, DNA repair, apoptosis and cell adhesion. This dissertation focuses on the elucidation of the genetic and epigenetic mechanisms associated with tumor suppressor gene silencing in human epithelial breast tumor cells, and the development of pharmacologic strategies aimed at reversing these types of repression through gene therapy and chromatin remodeling. Desmocollin 3 (DSC3) and MASPIN are anti-metastatic tumor suppressor genes that are silenced in a large percentage of breast tumors via aberrant DNA hypermethylation and histone hypoacetylation of their promoters. DSC3 and MASPIN are also p53-target genes, requiring its transcriptional activation to promote normal expression levels, yet a significant fraction of breast tumor cell lines express mutant forms of p53. Adenoviral-mediated re-introduction of wild type (wt) p53 into mutant p53-expressing breast tumor cells resulted in significant up-regulation of DSC3 and MASPIN expression, although not to the levels seen in normal breast epithelial cells. Mechanistically, the addition of wt p53 to these tumor cells resulted in increased histone acetylation and enhanced chromatin accessibility of the DSC3 and MASPIN promoters, despite continued cytosine hypermethylation. Pre-treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) prior to wt p53 addition produced synergistic reactivation of both DSC3 and MASPIN in breast cancer cells, approaching their levels in normal mammary cells. However, 5-aza-CdR did not significantly reduce DNA methylation in many cases as originally theorized. Therefore, follow-up studies focused on the identification of alternative, novel mechanisms of 5-aza-CdR-mediated induction of epigenetically silenced genes, finding that it consistently reduced transcriptionally repressive histone H3 lysine 9 (K9) methylation levels in the promoter regions of both DSC3 and MASPIN in breast tumor cells, by mediating global decreases in the histone H3 K9 methyltransferase, G9A. In summary, these results clearly show that cancer treatments targeting both genetic and epigenetic facets of gene regulation may be a useful strategy towards the therapeutic transcriptional reprogramming of cancer cells.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.