• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Supercritical Carbon Dioxide Processing of Silicon Wafer Surfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1207_sip1_m.pdf
    Size:
    8.915Mb
    Format:
    PDF
    Description:
    azu_etd_1207_sip1_m.pdf
    Download
    Author
    Xie, Bo
    Issue Date
    2005
    Keywords
    Chemical Engineering
    Advisor
    Muscat, Anthony J.
    Committee Chair
    Muscat, Anthony J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    RC (resistance x capacitance) time constant delay, cross-talk noise, and power dissipation of the interconnect structure become limiting factors for the performance of integrated circuits (IC) as device feature sizes continue to scale down. To address these problems, copper has replaced aluminum for interconnects in leading edge microelectronic devices to satisfy the demand for better performance. Low-k and porous low-k dielectrics are introduced to further reduce the RC delay of interconnects and improve signal transmission. The conventional wet and dry processing approaches, however, face problems with highly porous structures and changes in dielectric constant k due to absorption of chemicals. Supercritical CO₂ (scCO₂) is especially useful for processing porous low-k films since it has solvating properties that are comparable to liquids but mass transfer characteristics comparable to gases and no surface tension. In this work, the removal of copper from silicon surface as well as viable processes for drying, repair and capping of porous methylsilsesquioxane (p-MSQ) films using precursors dissolved in scCO₂ were demonstrated. Copper was etched from a silicon surface using the chelator hexafluoroacetylacetone (hfacH) dissolved in scCO₂ at 40-60°C and 100-250 atm. The Cu(II) shells were removed selectively to the Cu(I)₂O cores by processing with pure scCO₂ and rapidly releasing the system pressure (300 atm/min). Mechanical failure of the Cu(II)O and Cu(II)Cl₂ when CO₂ in stress corrosion cracks quickly expanded delaminated these layers, leaving only Cu(I)₂O on the surface. Etching of both Cu(II) and Cu(I) was achieved when oxidized samples were processed in scCO₂ containing approximately 120 ppm of hfacH for 2 min. The effect of adding 5-7 vol% cosolvents and 0.5-1 vol% Si-bearing precursors to scCO₂ to dry, repair, and cap blanket ashed p-MSQ films (JSR LKD5109) at 160-300 atm and 45-60°C for a 2 min soak was investigated. The drying experimental results showed that all the aliphatic C1-C6 alcohols and acetic acid removed H-bonded silanol (SiO-H) groups but that n-propanol and n-butanol were the most effective and had the lowest vapor pressure at 25°C of the cosolvents studied. Repair and capping results showed that methylsilyl (–O-Si-CH₃) moieties were deposited on the surface by reaction with both isolated/geminal silanol (SiO-H) and H-bonded silanol (SiO-H) groups. As-received ashed p-MSQ had a contact angle of less than 10° and a dielectric constant of 3.5 ± 0.1. After processing in a mixture containing 7% n-propanol and scCO₂, the contact angle was 15° and the dielectric constant decreased to 3.2 ± 0.1. The hydrophobicity of the p-MSQ film was recovered after Si-bearing precursors treatments as shown by contact angles >80°. The dielectric constant of ashed p-MSQ was completely or partially restored after treatments. The bi- or tri-functionality of the molecules with more reactive head groups produced intermolecular linking, and Ti chemical vapor deposition (CVD) showed that the pores of MSQ were capped after bi- or tri-functionality of the molecule processes.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.