• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cholecystokinin Drives Descending Facilitation to Mediate Morphine-Induced Paradoxical "Pain" and Antinociceptive Tolerance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1408_sip1_m.pdf
    Size:
    3.046Mb
    Format:
    PDF
    Description:
    azu_etd_1408_sip1_m.pdf
    Download
    Author
    Xie, Jennifer Yanhua
    Issue Date
    2005
    Keywords
    cholecystokinin
    rostral ventromedial medulla (RVM)
    morphine
    tolerance
    hyperalgesia
    microdialysis
    Advisor
    Porreca, Frank
    Committee Chair
    Porreca, Frank
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Sustained administration of morphine in humans and in animals induces a state of abnormal pain (i.e., hyperalgesia) which may be associated with the development of reduced analgesic efficacy (i.e., tolerance). Evidence suggests that opiate treatment may upregulate cholecystokinin (CCK), a pronociceptive peptide, in the brain and spinal cord. Therefore, we hypothesized that CCK may be upregulated by opiate treatment in the rostral ventromedial medulla (RVM) and to subsequently drive descending facilitation mechanisms to elicit hyperalgesia and antinociceptive tolerance in rats.CCK administered into the RVM of naive rats elicited hyperalgesia which was blocked by either RVM CCK2 receptor antagonist L365,260; or by bilateral lesion of dorsolateral funiculus, a major bulbospinal descending pain modulation pathway from the RVM to spinal cord.Sustained subcutaneous morphine induced hyperalgesia and spinal antinociceptive tolerance. Both effects were reversed by RVM CCK2 antagonist, suggesting that the up-regulation of the endogenous RVM CCK system played a critical role in the expression of these phenomena.Lesion of cells in the RVM which selectively express CCK2 receptors with a saporin construct (CCK-SAP) to inhibit ribosome activity, prevented morphine-induced hyperalgesia and spinal antinociceptive tolerance. These findings suggest that the integrity of the RVM CCK system is required for the development of hyperalgesia and antinociceptive tolerance induced by sustained morphine.The CCK system does not seem to play a role in setting the baseline sensory thresholds in normal rats because neither RVM L365,260 nor CCK-SAP treatment altered baseline sensory thresholds in naive rats.CCK appears to be present exclusively in nerve terminals of RVM neurons in naive rats. There was no obvious change in the levels of CCK-LI, CCK2 receptor, or CCK2 receptor mRNA in the RVM after sustained morphine treatment. However, microdialysis studies showed an approximately 5-fold increase in basal CCK levels in the RVM after sustained morphine treatment.Taken together, our results support the hypothesis that increased release of CCK in the RVM is induced by sustained morphine and drives descending facilitation to mediate morphine-induced paradoxical "pain" and spinal antinociceptive tolerance.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.