• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Physics Aware Programming Paradigm and Runtime Manager

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2253_sip1_m.pdf
    Size:
    676.9Kb
    Format:
    PDF
    Description:
    azu_etd_2253_sip1_m.pdf
    Download
    Author
    Zhang, Yeliang
    Issue Date
    2007
    Keywords
    distributed systems
    simulation
    application-transparent adaptation
    numerical algorithm and problems
    error analysis
    Advisor
    Hariri, Salim
    Committee Chair
    Hariri, Salim
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The overarching goal of this dissertation research is to realize a virtual collaboratory for the investigation of large-scale scientific computing applications which generally experience different execution phases at runtime and each phase has different computational, communication and storage requirements as well as different physical characteristics. Consequently, an optimal solution or numerical scheme for one execution phase might not be appropriate for the next phase of the application execution. Choosing the ideal numerical algorithms and solutions for all application runtime phases remains an active research area. In this dissertation, we present Physics Aware Programming (PAP) paradigm that enables programmers to identify the appropriate solution methods to exploit the heterogeneity and the dynamism of the application execution states. We implement a Physics Aware Runtime Manager (PARM) to exploit the PAP paradigm. PARM periodically monitors and analyzes the runtime characteristics of the application to identify its current execution phase (state). For each change in the application execution phase, PARM will adaptively exploit the spatial and temporal attributes of the application in the current state to identify the ideal numerical algorithms/solvers that optimize its performance. We have evaluated our approach using a real world application (Variable Saturated Aquifer Flow and Transport (VSAFT2D)) commonly used in subsurface modeling, diffusion problem kernel and seismic problem kernel. We evaluated the performance gain of the PAP paradigm with up to 2,000,000 nodes in the computation domain implemented on 32 processors. Our experimental results show that by exploiting the application physics characteristics at runtime and applying the appropriate numerical scheme with adapted spatial and temporal attributes, a significant speedup can be achieved (around 80%) and the overhead injected by PAP is negligible (less than 2%). We also show that the results using PAP is as accurate as the numerical solutions that use fine grid resolution.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.