• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Algorithms and Protocols for Constrained Path Selection and Fault Monitoring in Packet Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2866_sip1_m.pdf
    Size:
    2.998Mb
    Format:
    PDF
    Description:
    azu_etd_2866_sip1_m.pdf
    Download
    Author
    Ahuja, Satyajeet Singh
    Issue Date
    2008
    Keywords
    Graph Theory
    Optical Networks
    Advisor
    Krunz, Marwan M.
    Committee Chair
    Krunz, Marwan M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Efficient resource utilization and fast failure recovery are essential design goals of next-generation backbone networks. The need for efficient resource utilization has motivated the development of various protocols and techniques that offer data services over legacy backbone networks such as Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH). Enabling improved utilization with enhanced network reliability requires various network optimizations, both at the protocol and system levels. In this dissertation, we present a set of network optimization techniques that improve the performance of an end-user connected to classical packet networks such as Internet. First, we introduce an efficient path selection algorithm that enables seamless bandwidth upgrade for an existing Ethernet connection over SONET/SDH backbone using virtual concatenation technique. We also provide a heterogenous concatenation technique that improves the bandwidth utilization and that is easy to maintain. Second, we present a novel failure localization technique, that can detect single-link or simultaneous multiple-link failures. This technique is based on constructing a set of monitoring paths and cycles from one or more monitoring locations in the network. Third, we present an efficient routing and wavelength assignment scheme for backbone networks with stale network-state information. Finally, we present an e±cient server placement scheme for supporting multiple-description-coding (MDC) based media streaming over content delivery networks. We show that by using MDC-encoded media, intelligent server placement, and efficient path selection, the performance of an end-user can be greatly improved.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.