• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Efficient Algorithms for the Cell Based Single Destination System Optimal Dynamic Traffic Assignment Problem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10573_sip1_m.pdf
    Size:
    3.970Mb
    Format:
    PDF
    Description:
    azu_etd_10573_sip1_m.pdf
    Download
    Author
    Zheng, Hong
    Issue Date
    2009
    Keywords
    cell transmission model
    dynamic network flow
    dynamic traffic assignment
    earliest arrival flow
    network flow
    scaled flow
    Advisor
    Chiu, Yi-Chang
    Committee Chair
    Chiu, Yi-Chang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The cell transmission model (CTM) based single destination system optimal dynamic traffic assignment (SD-SO-DTA) model has been widely applied to situations such as mass evacuations on a transportation network. Although formulated as a linear programming (LP) model, embedded multi-period cell network representation yields an extremely large model for real-size networks. As a result, most of these models are not solvable using existing LP solvers. Solutions obtained by LP also involve holding vehicles at certain locations, violating CTM flow dynamics. This doctoral research is aimed at developing innovative algorithms that overcome both computational efficiency and solution realism issues. We first prove that the LP formulation of the SD-SO-DTA problem is equivalent to the earliest arrival flow (EAF), and then develop efficient algorithms to solve EAF. Two variants of the algorithm are developed under different model assumptions and network operating conditions. For the case of time-varying network parameters, we develop a network flow algorithm on a time-expanded network. The main challenge in this approach is to address the issue of having backward wave speed lower than forward wave speed. This situation leads to non-typical constraints involving coefficients with value of less than 1. In this dissertation we develop a new network algorithm to solve this problem in optimal, even with coefficients of value less than 1. Additionally, the developed approach solves for optimal flows that exhibit non-vehicle-holding properties, which is a major breakthrough compared to all existing solution techniques for SD-SODTA. For the case of time-invariant network parameters, we reduce the SD-SO-DTA to a standard EAF problem on a dynamic network, which is constructed on the original roadway network without dividing it into cells. We prove that the EAF under free flow status is one of the optimal solutions of SD-SO-DTA, if cell properties follow a trapezoidal/triangular fundamental diagram. We use chain flows obtained on a static network to induce dynamic flows, an approach applicable to large-scale networks. Another contribution of this research is to provide a simple and practical algorithm solving the EAF with multiple sources, which has been an active research area for many years. Most existing studies involve submodular function optimization as subroutines, and thus are not practical for real-life implementation. This study’s contribution in this regard is the development of a practical algorithm that avoids submodular function optimization. The main body of the given method is comprised of |S⁺| iterations of earliest arrival s - t flow computations, where |S⁺| is the number of sources. Numerical results show that our multi-source EAF algorithm solves the SD-SO-DTA problem with time-invariant parameters to optimum.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.