• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multivalent Interactions Based on Supramolecular Self-Assembly and Peptide-Labeled Quantum Dots for Imaging GPCRs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1844_sip1_m.pdf
    Size:
    9.147Mb
    Format:
    PDF
    Description:
    azu_etd_1844_sip1_m.pdf
    Download
    Author
    Zhou, Min
    Issue Date
    2006
    Keywords
    Multivalent interaction
    Coiled-coil
    Self-assembling
    HIV-1
    Quantum dots
    GPCR
    Advisor
    Ghosh, Indraneel
    Committee Chair
    Ghosh, Indraneel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Multivalent interactions are common in nature, such as influenza virus infecting epithelial cells, clearance of pathogens by antibody-mediated attachment to macrophages, etc. To mimic nature, we utilized a bottom-up approach to develop various multivalent self-assembling systems based on leucine-zipper peptides. We tethered several pairs of leucine-zipper peptides to PAMAM dendrimers to form leucine-zipper dendrimers (LZDs). We conjugated Fos/Jun to the dendrimer to make D0Fos4 and D0Jun4, and studied the interactions between these LZDs and their cognate peptide target, either Jun or Fos. Our experiments showed that the D0Fos4 can non-covalently assemble four copies of Jun, and this approach can be further used for the rapid non-covalently assembling of multimeric ligands. We also pursued the multivalent target of GPCRs with a Fos/Jun assembly, and found the complex can potentially be used as a molecular switch to target GPCRs with controlled ligand activity. In a related project for bio-material design based on self-assembly of LZDs, we synthesized a different pair of LZDs, D-Ez4 and D-Kz4, and established that they can assemble at neutral pH to form helical fibrils which display higher order self-organized structures, providing a new methodology for bio-material design. In another effort for studying multivalent interactions, we conjugated three copies of the F23, mini-protein that binds the HIV-1 capsid protein, to a trimesic acid and obtained a trivalent inhibitor, Tri-F23. Tri-F23 showed enhanced binding in ELISA against gp120, but was not significantly more effective preventing HIV entry. This methodology provides a new strategy for developing multivalent inhibitors for preventing HIV-1 infection at the entry level. In a related area, we are developing imaging agents based on quantum dots that can detect GPCRs on whole cells and at the single molecule level. To this end, a new method was developed for biocompatible amphphilic polymers to coat quantum dots. This amphiphilic polymer facilitates rapid quantum dot conjugation to any ligand with a free thiol or engineered cysteine. Several GPCR targeted peptides have been utilized for imaging receptors on whole cells and as single molecules. These efforts will guide the rational design of multivalent ligands for targeting GPCRs and other cell surface proteins.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.