• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of Subsurface Heterogeneity Using Transient Hydraulic and Tracer Tomography

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1345_sip1_m.pdf
    Size:
    4.452Mb
    Format:
    PDF
    Description:
    azu_etd_1345_sip1_m.pdf
    Download
    Author
    Zhu, Junfeng
    Issue Date
    2005
    Advisor
    Yeh, Tian-Chyi J.
    Committee Chair
    Yeh, Tian-Chyi J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Transient hydraulic tomography (THT) is a cost-effective technique for characterizing the heterogeneity of hydraulic parameters in the subsurface. In this study we developed an efficient sequential successive linear estimator (SSLE) for interpreting head data from transient hydraulic tomography to estimate three dimensional hydraulic conductivity and specific storage fields. We first analyzed the cross correlation between transient head data and hydraulic parameters and covariance of transient heads using a hypothetical one dimensional aquifer. This analysis led to an efficient way to interpret transient heads. The SSLE was then tested using a well-posed problem and an ill-posed problem. To affirm the robustness of our approach, we applied transient hydraulic tomography to a hypothetical three-dimensional heterogeneous aquifer.Our SSLE approach involves solving adjoint equations during the sensitivity analysis for transient flow, which creates greater computational cost than steady state hydraulic tomography. To reduce the computational cost, we developed an estimation approach that utilizes the zeroth and first temporal moments of well hydrographs, instead of drawdown itself. The governing equations and adjoint equations for the temporal moments are Poisson's equations. These equations demand less computational resources as opposed to the parabolic equation that governs drawdown evolution. Therefore, a temporal moment approach is expected to expedite the interpretation of THT surveys. Based on this premise, we extended our sequential successive linear estimator (SSLE) to use the zeroth moment and characteristic time of the drawdown-recovery data generated by THT surveys. We subsequently investigated computational efficiency and accuracy of the moment approach using a synthetic aquifer.We further extended the hydraulic tomography concept to tracer tomography for characterizing NAPL (Non-aqueous phase liquid) source zones. Similar to a hydraulic tomographic survey, a tracer tomography survey sequentially injects tracers at a selected well and monitors tracer breakthroughs at other wells in a NAPL source zone to detect the distribution of NAPL's. To quantitatively interpret the breakthroughs from the tracer tomography, a joint stochastic estimation technique was developed. The method is an extension of the SSLE used for interpreting hydraulic tomography surveys. The technology was tested and investigated using a synthetic aquifer contaminated with a single component NAPL.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Hydrology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.