• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Heterologous Expression of Alpha 6*- Nicotinic Acetylcholine Receptors and the Natural Distribution of Alpha 6 Subunits

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2009_sip1_m.pdf
    Size:
    3.212Mb
    Format:
    PDF
    Description:
    azu_etd_2009_sip1_m.pdf
    Download
    Author
    Buhlman, Lori Marie
    Issue Date
    2007
    Keywords
    acetylcholine
    nicotine
    nicotinic
    reward
    ion channel
    fluorescence in situ hybridization
    Advisor
    Lukas, Ronald J
    Committee Chair
    Lukas, Ronald J
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Nicotinic acetylcholine receptors (nAChR) are neurotransmitter-gated ion channels that exist as a family of subtypes defined by unique subunit compositions. nAChR containing α6 subunits (α6*-nAChR) have attracted interest because α6 subunits are thought to be localized in brain regions implicated in reward, mood and drug dependence. To provide new information necessary toward a more complete understanding of roles of α6*-nAChR in neuropsychiatric health and disease, three lines of investigation were pursued. A set of stably transfected, human, immortalized cell lines were generated that heterologously express nAChR α6 subunits in combination with other nAChR subunits found in reward brain regions (nAChR subunit combinations α6β2, α6β4, α6β2β3, α6β4β3, α6β2β3α5, α6β4β3α5, α6α4β2β3 and α6α4β4β3). The α6α4β2β3 combination may have a functional response to epibatidine that differs from that of the α4β2 nAChR. A unique binding site was identified in cells transfected with the α6β4β3α5 nAChR subunit combination. Messenger RNA fluorescence in situ hybridization (mRNA FISH) studies established regional and celluar distribution of nAChR α6 subunit mRNA in the mouse brain. The third line of study extended this work to examine potential co-expression of nAChR α6 subunits and glutamic acid decarboxylase (GAD) or tyrosine hydroxylase (TH) as labels of GABAergic and dopaminergic/catecholaminergic neurons respectively, using tandem mRNA FISH and fluorescence immunohistochemistry. nAChR α6 subunit signal in the substantia nigra (SN) and ventral tegmental area (VTA) was congruent with previous studies. Message was also detected in the amydala, dentate gyrus, striatum, zona incerta, and cingulate, entorhinal, perirhinal, piriform, and prelimbic cortices. nAChR α6 mRNA was coexpressed with GAD in the amygdala, dentate gyrus, striatum, SN, VTA and cingulate, entorhinal, prelimbic and prelimbic cortices. TH was exclusively co-localized with nAChR α6 mRNA in the SN and VTA. Findings suggest extended roles for α6*-nAChR in the brain, particularly in the control of GABAergic neuronal activity and/or GABA release. These studies provide new insights into the composition of α6*-nAChR, the localization and cellular origins of nAChR α6 subunit expression. Data collected suggest roles for α6*-nAChR in many brain regions, including those involved in higher order processes involved in drug dependence and reward, and in modulation of inhibitory neurotransmission.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Neuroscience
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.