• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assessing the Ecohydrologic Consequences of Woody Plant Encroachment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10470_sip1_m.pdf
    Size:
    9.092Mb
    Format:
    PDF
    Description:
    azu_etd_10470_sip1_m.pdf
    Download
    Author
    Buono, Jared
    Issue Date
    2009
    Keywords
    hydraulics
    shrub
    surface hydrology
    vegetation change
    velocity
    watershed
    Advisor
    Guertin, Phillip
    Committee Chair
    Guertin, Phillip
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This three part study attempted to enhance our understanding of vegetation change and its potential effects on ecohydrology in drylands. The first study developed a method to measure the velocity of shallow overland flow. Under rainfall simulation, dye tracers were applied to runoff and photographed to calculate mean surface velocity. Results showed this approach was a significant improvement explaining 13% more of the variation in mean velocity compared to traditional methods. Results from the first study were used to compare hydraulic parameters on shrub- and grass-dominated plots in the second study. Previous research has suggested microtopography in shrublands acts to concentrate flow, leading to increased runoff velocity compared to grasslands. However, present findings showed that flow velocities were similar on many grass and shrub plots; only plots with ground cover > 90% exhibited significantly lower flow velocities, and some shrub-dominated plots had lower flow velocities than grass-dominated plots implying that horizontal water flux is reduced under certain states of woody plant encroachment. In terms of ground cover characteristics, velocity increased rapidly with increases in the fraction of bare soil, up to a value of ~20% bare soil. Above ~20% bare soil, basal gap became a dominant factor suggesting a possible threshold where spatial metrics related to the distance between plants become important indicator of shallow flow velocity. The third study tested an approach to quantify woody plant canopy metrics over large areas. Radar has been used to map biomass in forests but few studies have examined open canopy ecosystems. Field measurements of shrublands were compared to satellite images to identify the relationship between radar signal and height and cover of woody vegetation. Results indicated that radar signal increased positively with shrub height or shrub volume explaining 74% and 90% of the variation, respectively. The effect of surface roughness and sub-canopy species on radar signal appears reduced when images are collected at large incidence angles.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Natural Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.