Name:
azu_etd_2033_sip1_m.pdf
Size:
309.5Kb
Format:
PDF
Description:
azu_etd_2033_sip1_m.pdf
Author
Caine, John ArloIssue Date
2007Advisor
Pickrell, Douglas M.Committee Chair
Pickrell, Douglas M.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Let X be a simply connected compact Riemannian symmetric space, let U be the universal covering group of the identity component of the isometry group of X, and let g denote the complexification of the Lie algebra of U, g=u^C. Each u-compatible triangular decomposition g= n_- + h + n_+ determines a Poisson Lie group structure pi_U on U. The Evens-Lu construction produces a (U, pi_U)-homogeneous Poisson structure on X. By choosing the basepoint in X appropriately, X is presented as U/K where K is the fixed point set of an involution which stabilizes the triangular decomposition of g. With this presentation, a connection is established between the symplectic foliation of the Evens-Lu Poisson structure and the Birkhoff decomposition of U/K. This is done through reinterpretation of results of Pickrell. Each symplectic leaf admits a natural torus action. It is shown that these actions are Hamiltonian and the momentum maps are computed using triangular factorization. Finally, local formulas for the Evens-Lu Poisson structure are displayed in several examples.Type
textElectronic Dissertation
Degree Name
PhDDegree Level
doctoralDegree Program
MathematicsGraduate College