• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Adjuvant Effect of Chaperone-Rich Cell Lysate: The Effects of CRCL on the Activation of Immune Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10228_sip1_m.pdf
    Size:
    7.680Mb
    Format:
    PDF
    Description:
    azu_etd_10228_sip1_m.pdf
    Download
    Author
    Cantrell, Jessica
    Issue Date
    2009
    Keywords
    Chaperone-Rich Cell Lysate
    Dendritic Cells
    Macrophages
    Advisor
    Katsanis, Emmanuel
    Committee Chair
    Katsanis, Emmanuel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cancer immunotherapy aims to use and manipulate the host’s immune system to fight against cancer. The objective of this strategy is to induce specific and persistent immune responses leading to tumor eradication. Heat shock proteins (HSP) purified from cancer tissues have been identified as unique mediators of specific anti-tumor immunity. In our laboratory, we have developed an original vaccine, termed CRCL (Chaperone-Rich Cell Lysate) that consists of multiple HSP complexes enriched from tumor lysates. CRCL immunization leads to an efficient protection against a wide variety of murine cancers by inducing a strong, long-lasting, and specific T and NK-cell dependent immune responses against the tumor from which it has been generated. Tumor-derived CRCL has been shown to be more efficient in triggering DC activation than individual purified HSP or tumor lysates. The immunostimulatory effects of CRCL arise from its superior ability to provide a wide variety of tumor antigens to the immune system and by providing potent adjuvant effects. However, CD4⁺CD25⁺ regulatory T lymphocytes (Treg) critically contribute to the mechanisms of cancer-induced suppression. Data from independent groups including ours suggests they may also restrain the function of antigen presenting cells. The current study was designed to elucidate the molecular signaling events triggered by the tumor-derived CRCL vaccine in antigen presenting cells and evaluate whether CRCL may overcome the inhibitory effects of Treg modulation of DC and macrophage activation. Our results indicate CRCL activates DC and macrophages by inducing proinflammatory cytokine chemokine secretion. CRCL induces iNOS expression and NO production in macrophages. CRCL activation of DC and macrophages results in transcription factor NF-κB activation in vitro and in vivo, and this includes the activation of additional signaling molecules upstream of NF-κB. Following CRCL treatment the phenotypic maturation of DC, the production of DC and macrophage pro-inflammatory cytokines, and the activation of the transcription factor NF-κB are not affected by Treg. Additionally, CRCL induced activation of DC is not diminished by the immunosuppressive cytokine TGF-β 1. Our results indicate tumor-derived CRCL-treated DC and macrophages are refractory to Treg inhibition. These results are important for advancing CRCL-based vaccines in Phase I clinical trials.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Cancer Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.